Integration over a fractal curve and the jump problem
Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 549-557.

Voir la notice de l'article provenant de la source Math-Net.Ru

A definition of integration, i.e., a generalization of a functional of the form $$ u(z)\mapsto\int_\Gamma f(z)u(z)dz $$ to the case where $\Gamma$ is a fractal curve on the complex plane and $f(z)$ (integration density) is a function defined on this curve is given. The existence and uniqueness of the integral with given density are examined.
@article{MZM_1998_64_4_a6,
     author = {B. A. Kats},
     title = {Integration over a fractal curve and the jump problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {549--557},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a6/}
}
TY  - JOUR
AU  - B. A. Kats
TI  - Integration over a fractal curve and the jump problem
JO  - Matematičeskie zametki
PY  - 1998
SP  - 549
EP  - 557
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a6/
LA  - ru
ID  - MZM_1998_64_4_a6
ER  - 
%0 Journal Article
%A B. A. Kats
%T Integration over a fractal curve and the jump problem
%J Matematičeskie zametki
%D 1998
%P 549-557
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a6/
%G ru
%F MZM_1998_64_4_a6
B. A. Kats. Integration over a fractal curve and the jump problem. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 549-557. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a6/

[1] Kats B. A., “Zadacha o skachke i integral po nespryamlyaemoi krivoi”, Izv. vuzov. Matem., 1987, no. 5, 49–57 | MR | Zbl

[2] Harrison J., Norton A., “Geometric integration on fractal curves in the plane”, Indiana Univ. Math. J., 40:2 (1991), 567–594 | DOI | MR | Zbl

[3] Harrison J., Norton A., “The Gauss–Green theorem for fractal boundaries”, Duke Math. J., 67:3 (1992), 575–586 | DOI | MR

[4] Kats B. A., “Ob integrirovanii po nespryamlyaemoi krivoi”, Voprosy matem., mekhaniki sploshnykh sred i primeneniya matem. metodov v stroitelstve, MISI, M., 1992, 63–69

[5] Harrison J., “Stokes' theorem for nonsmooth chains”, Bull. Amer. Math. Soc., 29:2 (1993), 235–242 | DOI | MR | Zbl

[6] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. 1, Mir, M., 1986

[7] Dynkin E. M., “Gladkost integrala tipa Koshi”, Zapiski nauch. sem. LOMI, 92, Nauka, L., 1979, 115–133 | MR | Zbl

[8] Jonsson A., Wallin H., “Function spaces on subsets of $\mathbb R^n$”, Math. Rep., V. 2, Part 1, Harwood Acad. Publ., London, 1984

[9] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | Zbl

[10] Mandelbrot B. B., The Fractal Geometry of Nature, Freeman, San Francisco, 1982 | Zbl

[11] Feder E., Fraktaly, Mir, M., 1991

[12] Väsäla J., Vuorinen M., Wallin H., Thick Sets and Quasi-symmetric Maps, Reports of Dept. of Math. Preprint No2 (February, 1992), Univ. of Helsinki, Espoo, 1992

[13] Jones P. W., “Quasiconformal mappings and extendability of functions in Sobolev spaces”, Acta Math., 147:1–2 (1981), 71–88 | DOI | MR | Zbl

[14] Wallin H., “The trace to the boundary of Sobolev space on a snowflake”, Manuscripta Math., 73 (1991), 117–125 | DOI | MR | Zbl

[15] Kats B. A., “Zadacha Rimana na zamknutoi zhordanovoi krivoi”, Izv. vuzov. Matem., 1983, no. 4, 68–80 | MR | Zbl

[16] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | Zbl

[17] Ob'edkov T. E., “Primenenie nestandartnogo analiza k teorii integrirovaniya i reshenie zadachi Rimana o skachke”, Algebra i analiz, Tezisy dokl. mezhdunarodnoi konferentsii, posvyaschennoi 100-letiyu N. G. Chebotarëva. Ch. II, Kazan, 1994, 96–97

[18] Markushevich A. I., Izbrannye glavy teorii analiticheskikh funktsii, Nauka, M., 1976 | Zbl

[19] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[20] Dolzhenko E. P., “O “stiranii” osobennostei analiticheskikh funktsii”, UMN, 18:4 (1963), 135–142 | MR | Zbl