Integration over a fractal curve and the jump problem
Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 549-557

Voir la notice de l'article provenant de la source Math-Net.Ru

A definition of integration, i.e., a generalization of a functional of the form $$ u(z)\mapsto\int_\Gamma f(z)u(z)dz $$ to the case where $\Gamma$ is a fractal curve on the complex plane and $f(z)$ (integration density) is a function defined on this curve is given. The existence and uniqueness of the integral with given density are examined.
@article{MZM_1998_64_4_a6,
     author = {B. A. Kats},
     title = {Integration over a fractal curve and the jump problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {549--557},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a6/}
}
TY  - JOUR
AU  - B. A. Kats
TI  - Integration over a fractal curve and the jump problem
JO  - Matematičeskie zametki
PY  - 1998
SP  - 549
EP  - 557
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a6/
LA  - ru
ID  - MZM_1998_64_4_a6
ER  - 
%0 Journal Article
%A B. A. Kats
%T Integration over a fractal curve and the jump problem
%J Matematičeskie zametki
%D 1998
%P 549-557
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a6/
%G ru
%F MZM_1998_64_4_a6
B. A. Kats. Integration over a fractal curve and the jump problem. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 549-557. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a6/