On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem
Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 543-548

Voir la notice de l'article provenant de la source Math-Net.Ru

The following elliptic equations with $p$-Laplacian $$ -\Delta_pu=\lambda g(x)|u|^{p-2}u+f(x)|u|^{\gamma-2}u $$ are considered in the entire space $\mathbb R^N$ and in the bounded domain with the Dirichlet boundary conditions. By the fibering method for the basic positive solutions of these equations, we derive the following asymptotic formula $$ u^\lambda=(\lambda_1-\lambda)^{1/(\gamma-p)}u_1 +o\bigl((\lambda_1-\lambda)^{1/(\gamma-p)}\bigr) $$ for $\lambda\uparrow\lambda_1$, where $\lambda_1$ is the first eigenvalue and $u_1$ is the corresponding eigenfunction of nonperturbed problem ($f=0$).
@article{MZM_1998_64_4_a5,
     author = {Ya. Sh. Il'yasov},
     title = {On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {543--548},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a5/}
}
TY  - JOUR
AU  - Ya. Sh. Il'yasov
TI  - On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem
JO  - Matematičeskie zametki
PY  - 1998
SP  - 543
EP  - 548
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a5/
LA  - ru
ID  - MZM_1998_64_4_a5
ER  - 
%0 Journal Article
%A Ya. Sh. Il'yasov
%T On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem
%J Matematičeskie zametki
%D 1998
%P 543-548
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a5/
%G ru
%F MZM_1998_64_4_a5
Ya. Sh. Il'yasov. On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 543-548. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a5/