On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem
Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 543-548.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following elliptic equations with $p$-Laplacian $$ -\Delta_pu=\lambda g(x)|u|^{p-2}u+f(x)|u|^{\gamma-2}u $$ are considered in the entire space $\mathbb R^N$ and in the bounded domain with the Dirichlet boundary conditions. By the fibering method for the basic positive solutions of these equations, we derive the following asymptotic formula $$ u^\lambda=(\lambda_1-\lambda)^{1/(\gamma-p)}u_1 +o\bigl((\lambda_1-\lambda)^{1/(\gamma-p)}\bigr) $$ for $\lambda\uparrow\lambda_1$, where $\lambda_1$ is the first eigenvalue and $u_1$ is the corresponding eigenfunction of nonperturbed problem ($f=0$).
@article{MZM_1998_64_4_a5,
     author = {Ya. Sh. Il'yasov},
     title = {On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {543--548},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a5/}
}
TY  - JOUR
AU  - Ya. Sh. Il'yasov
TI  - On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem
JO  - Matematičeskie zametki
PY  - 1998
SP  - 543
EP  - 548
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a5/
LA  - ru
ID  - MZM_1998_64_4_a5
ER  - 
%0 Journal Article
%A Ya. Sh. Il'yasov
%T On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem
%J Matematičeskie zametki
%D 1998
%P 543-548
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a5/
%G ru
%F MZM_1998_64_4_a5
Ya. Sh. Il'yasov. On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 543-548. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a5/

[1] Drabek P., Pohožaev S. I., “Positive solutions for the $p$-Laplasian: Application of the fibrering method”, Proc. Roy. Soc. Edinburgh. Sect. A, 127:4 (1997), 703–726 | MR | Zbl

[2] Drabek P., Kufner A., Nocolosi F., Nonlinear Elliptic Equations, Singular and Degenerate Case, Univ. of West Bohemia, Pilsen, 1996

[3] Alama S., Tarantello G., “On semilinear elliptic equations with indefinite nonlinearites”, Calc. Var. Partial Differential Equations, 1:4 (1993), 439–475 | DOI | MR | Zbl

[4] Berestycki H., Capuzzo-Dolcetta I., Nirenberg L., “Problèmes elliptiques idéfinis et théorèmes de Liouville non-lineaires”, C. R. Acad. Sci. Paris. Sér. I. Math., 317:10 (1993), 945–950 | MR | Zbl

[5] del Pino M. A., Felmer L. P., “Multiple solutions for semilinear elliptic equation”, Trans. Amer. Math. Soc., 347:727 (1995), 4839–4855 | MR

[6] Ouyang T., “On the positive solutions of semilinear equations $\Delta u+\lambda u-hu^p=0$ on compact manifolds”, Trans. Amer. Math. Soc., 331 (1992), 503–527 ; “II”, Indiana Univ. Math. J., 40 (1991), 1083–1141 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Pokhozhaev S. I., “O metode rassloenii dlya reshenii nelineinykh kraevykh zadach”, Tr. MIAN, 192, Nauka, M., 1990, 146–163 | MR | Zbl