The boundary behavior of components of polyharmonic functions
Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 518-530
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the following representation of polyharmonic functions on the unit ball $D^m$: $$ f=\Phi_0+(1-r^2)\Phi_1+\dots+(1-r^2)^{n-1}\Phi_{n-1}, $$ where the $\Phi_j$ are harmonic on $D^m$ . We study the relation between uniform boundary properties of $f$ (its smoothness and growth while approaching the boundary) and the same properties of the terms in this representation. The theorems proved in this paper generalize some results obtained by Dolzhenko in the theory of polyanalytic functions.
@article{MZM_1998_64_4_a3,
author = {K. O. Besov},
title = {The boundary behavior of components of polyharmonic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {518--530},
year = {1998},
volume = {64},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a3/}
}
K. O. Besov. The boundary behavior of components of polyharmonic functions. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 518-530. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a3/
[1] Nicolesco M., Les fonctions polyharmoniques, Herman, Paris, 1936
[2] Dolzhenko E. P., “O granichnom povedenii komponent polianaliticheskoi funktsii”, Dokl. RAN, 338:5 (1994), 585–588 | Zbl
[3] Dolzhenko E. P., “Ob osobykh tochkakh nepreryvnykh garmonicheskikh funktsii”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1251–1270 | MR | Zbl
[4] Dolzhenko E. P., “O granichnom povedenii komponent polianaliticheskoi funktsii”, Matem. zametki, 63:6 (1998), 821–834 | MR | Zbl
[5] Almansi E., “Sull'integrazione dell'equazione differenziale $\Delta^n=0$”, Annali di Matematica. Sèr. 3, 2 (1899), 1–59 | DOI
[6] Kurant R., Gilbert D., Metody matematicheskoi fiziki, T. 2, Mir, M., 1964