Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_4_a14, author = {V. T. Khudalov}, title = {For cones in {Hilbert} spaces, regularity is equivalent to self-duality}, journal = {Matemati\v{c}eskie zametki}, pages = {616--621}, publisher = {mathdoc}, volume = {64}, number = {4}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a14/} }
V. T. Khudalov. For cones in Hilbert spaces, regularity is equivalent to self-duality. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 616-621. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a14/
[1] Krein M. G., Rutman M. A., “Lineinye operatory, ostavlyayuschie invariantami konus v prostranstve Banakha”, UMN, 3:1 (1948), 3–95 | MR | Zbl
[2] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | Zbl
[3] Khudalov V. T., “Regulyarnye konusy v gilbertovom prostranstve”, Sib. matem. zh., 37:1 (1996), 193–196 | MR | Zbl
[4] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl
[5] Vulikh B. Z., Vvedenie v teoriyu konusov v normirovannykh prostranstvakh, Izd-vo Kalininskogo un-ta, Kalinin, 1977
[6] Vulikh B. Z., Spetsialnye voprosy geometrii konusov v normirovannykh prostranstvakh, Izd-vo Kalininskogo un-ta, Kalinin, 1978
[7] Moreau J.-J., “Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires”, C. R. Acad. Sci. Paris. Sér. I. Math., 225 (1962), 238–240 | MR
[8] Wittstock G., “Ordered normed tensor products”, Lecture Notes in Phys., 29, 1974, 67–84 | MR | Zbl