Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_4_a13, author = {V. I. Khomich}, title = {Separability of normalizable superintuitionistic propositional logics}, journal = {Matemati\v{c}eskie zametki}, pages = {606--615}, publisher = {mathdoc}, volume = {64}, number = {4}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a13/} }
V. I. Khomich. Separability of normalizable superintuitionistic propositional logics. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 606-615. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a13/
[1] Wajsberg M., “Untersuchungen über den Aussagenkalkül von A. Heyting”, Wiadom. Mat., 46 (1938), 45–101
[2] Cherch A., Vvedenie v matematicheskuyu logiku, T. 1, IL, M., 1960
[3] Kabziǹski J. K., “The Wajsberg's results connected with separability of the intuitionistic propositional logic”, Bull. Sect. Logic. Univ. Łódź, 2:2 (1973), 131–133 | MR
[4] Kabziǹski J. K., Porebska M., “Proof of the separability of the intuitionistic propositional logic by the Wajsberg method”, Rep. Math. Logic, 4 (1975), 31–38 | MR
[5] Tsitkin A. I., “K voprosu ob oshibke v izvestnoi rabote M. Vaisberga”, Issledovaniya po neklassicheskim logikam i teorii mnozhestv, Nauka, M., 1979, 240–256 | MR
[6] Curry H., “A note on the reduction of Gentzen's calculus LJ”, Bull. Amer. Math. Soc., 45:4 (1939), 288–293 | DOI | Zbl
[7] Klini S. K., Vvedenie v metamatematiku, IL, M., 1957
[8] Horn A., “The separation theorem of intuitionist propositional calculus”, J. Symbolic Logic, 27:4 (1962), 391–399 | DOI | MR
[9] Hosoi T., “On the separation theorem of intermediate propositional calculi”, Proc. Japan Acad. Ser. A. Math. Sci., 42:6 (1966), 535–538 | MR | Zbl
[10] Hosoi T., “Algebraic proof of the separation theorem on Dummett's LC”, Proc. Japan Acad. Ser. A. Math. Sci., 42:7 (1966), 693–695 | MR | Zbl
[11] Hosoi T., “The separable axiomatization of the intermediate propositional systems $S_n$ of Gödel”, Proc. Japan Acad. Ser. A. Math. Sci., 42:9 (1966), 1001–1006 | MR | Zbl
[12] Hosoi T., “A criterion for the separable axiomatization of Gödel's $S_n$”, Proc. Japan Acad. Ser. A. Math. Sci., 43:5 (1967), 365–368 | MR | Zbl
[13] McKay C. G., “The non-separability of a certain finite extension of Heyting's propositional logic”, Proc. Konink. Nederl. Akad. Wetensch., 71:3 (1968), 312–315 | Zbl
[14] Hosoi T., “Non-separable intermediate propositional logics”, J. Tsuda College, 8 (1976), 13–18 | MR
[15] Khomich V. I., “Otdelimost superintuitsionistskikh propozitsionalnykh logik”, Issledovaniya po teorii algorifmov i matematicheskoi logike, Nauka, M., 1979, 98–115 | MR
[16] Khomich V. I., “Teorema otdelimosti dlya superintuitsionistskikh ischislenii vyskazyvanii”, Dokl. AN SSSR, 229:6 (1976), 1327–1329 | MR | Zbl
[17] Khomich V. I., “O probleme otdelimosti dlya superintuitsionistskikh propozitsionalnykh logik”, Dokl. AN SSSR, 254:4 (1980), 820–823 | MR | Zbl
[18] Khomich V. I., “Ob otdelimykh superintuitsionistskikh propozitsionalnykh ischisleniyakh i o kon'yunktivno nerazlozhimykh elementakh v implikativnykh polustrukturakh”, Z. Math. Logik Grundlag. Math., 32:2 (1986), 149–180 | DOI | MR | Zbl
[19] Khomich V. I., “O svoistvakh superintuitsionistskikh propozitsionalnykh ischislenii”, Sib. matem. zh., 31:6 (1990), 158–175 | MR | Zbl
[20] Hosoi T., Ono H., “Axiomatization of models for intermediate logics constructed with Boolean models by piling up”, Publ. Res. Inst. Math. Sci., 8:1 (1972), 1–11 | DOI | MR | Zbl
[21] Hosoi T., “On intermediate logics, III”, J. Tsuda College, 6 (1974), 23–38 | MR
[22] Hosoi T., “The separation theorem on the classical system”, J. Fac. Sci. Univ. Tokyo. Sect. IA. Math., 12:2 (1966), 223–230 | MR | Zbl
[23] Karri Kh. B., Osnovaniya matematicheskoi logiki, Mir, M., 1969
[24] Raseva E., Sikorskii R., Matematika metamatematiki, Nauka, M., 1972
[25] McKay C. G., “The decidability of certain intermediate propositional logics”, J. Symbolic Logic, 33:2 (1968), 258–264 | DOI | MR | Zbl
[26] Yankov V. A., “Ob ischislenii slabogo zakona isklyuchennogo tretego”, Izv. AN SSSR. Ser. matem., 32:5 (1968), 1044–1051 | MR