Separability of normalizable superintuitionistic propositional logics
Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 606-615.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of separability of superintuitionistic propositional logics that are extensions of the intuitionistic propositional logic is studied. A criterion of separability of normal superintuitionistic propositional logics, as well as results concerning the completeness of their subcalculi is obtained. This criterion makes it possible to determine whether a normalizable superintuitionistic propositional logic is separable. By means of these results, the mistakes discovered by the author in the proofs of certain statements by McKay and Hosoi are corrected.
@article{MZM_1998_64_4_a13,
     author = {V. I. Khomich},
     title = {Separability of normalizable superintuitionistic propositional logics},
     journal = {Matemati\v{c}eskie zametki},
     pages = {606--615},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a13/}
}
TY  - JOUR
AU  - V. I. Khomich
TI  - Separability of normalizable superintuitionistic propositional logics
JO  - Matematičeskie zametki
PY  - 1998
SP  - 606
EP  - 615
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a13/
LA  - ru
ID  - MZM_1998_64_4_a13
ER  - 
%0 Journal Article
%A V. I. Khomich
%T Separability of normalizable superintuitionistic propositional logics
%J Matematičeskie zametki
%D 1998
%P 606-615
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a13/
%G ru
%F MZM_1998_64_4_a13
V. I. Khomich. Separability of normalizable superintuitionistic propositional logics. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 606-615. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a13/

[1] Wajsberg M., “Untersuchungen über den Aussagenkalkül von A. Heyting”, Wiadom. Mat., 46 (1938), 45–101

[2] Cherch A., Vvedenie v matematicheskuyu logiku, T. 1, IL, M., 1960

[3] Kabziǹski J. K., “The Wajsberg's results connected with separability of the intuitionistic propositional logic”, Bull. Sect. Logic. Univ. Łódź, 2:2 (1973), 131–133 | MR

[4] Kabziǹski J. K., Porebska M., “Proof of the separability of the intuitionistic propositional logic by the Wajsberg method”, Rep. Math. Logic, 4 (1975), 31–38 | MR

[5] Tsitkin A. I., “K voprosu ob oshibke v izvestnoi rabote M. Vaisberga”, Issledovaniya po neklassicheskim logikam i teorii mnozhestv, Nauka, M., 1979, 240–256 | MR

[6] Curry H., “A note on the reduction of Gentzen's calculus LJ”, Bull. Amer. Math. Soc., 45:4 (1939), 288–293 | DOI | Zbl

[7] Klini S. K., Vvedenie v metamatematiku, IL, M., 1957

[8] Horn A., “The separation theorem of intuitionist propositional calculus”, J. Symbolic Logic, 27:4 (1962), 391–399 | DOI | MR

[9] Hosoi T., “On the separation theorem of intermediate propositional calculi”, Proc. Japan Acad. Ser. A. Math. Sci., 42:6 (1966), 535–538 | MR | Zbl

[10] Hosoi T., “Algebraic proof of the separation theorem on Dummett's LC”, Proc. Japan Acad. Ser. A. Math. Sci., 42:7 (1966), 693–695 | MR | Zbl

[11] Hosoi T., “The separable axiomatization of the intermediate propositional systems $S_n$ of Gödel”, Proc. Japan Acad. Ser. A. Math. Sci., 42:9 (1966), 1001–1006 | MR | Zbl

[12] Hosoi T., “A criterion for the separable axiomatization of Gödel's $S_n$”, Proc. Japan Acad. Ser. A. Math. Sci., 43:5 (1967), 365–368 | MR | Zbl

[13] McKay C. G., “The non-separability of a certain finite extension of Heyting's propositional logic”, Proc. Konink. Nederl. Akad. Wetensch., 71:3 (1968), 312–315 | Zbl

[14] Hosoi T., “Non-separable intermediate propositional logics”, J. Tsuda College, 8 (1976), 13–18 | MR

[15] Khomich V. I., “Otdelimost superintuitsionistskikh propozitsionalnykh logik”, Issledovaniya po teorii algorifmov i matematicheskoi logike, Nauka, M., 1979, 98–115 | MR

[16] Khomich V. I., “Teorema otdelimosti dlya superintuitsionistskikh ischislenii vyskazyvanii”, Dokl. AN SSSR, 229:6 (1976), 1327–1329 | MR | Zbl

[17] Khomich V. I., “O probleme otdelimosti dlya superintuitsionistskikh propozitsionalnykh logik”, Dokl. AN SSSR, 254:4 (1980), 820–823 | MR | Zbl

[18] Khomich V. I., “Ob otdelimykh superintuitsionistskikh propozitsionalnykh ischisleniyakh i o kon'yunktivno nerazlozhimykh elementakh v implikativnykh polustrukturakh”, Z. Math. Logik Grundlag. Math., 32:2 (1986), 149–180 | DOI | MR | Zbl

[19] Khomich V. I., “O svoistvakh superintuitsionistskikh propozitsionalnykh ischislenii”, Sib. matem. zh., 31:6 (1990), 158–175 | MR | Zbl

[20] Hosoi T., Ono H., “Axiomatization of models for intermediate logics constructed with Boolean models by piling up”, Publ. Res. Inst. Math. Sci., 8:1 (1972), 1–11 | DOI | MR | Zbl

[21] Hosoi T., “On intermediate logics, III”, J. Tsuda College, 6 (1974), 23–38 | MR

[22] Hosoi T., “The separation theorem on the classical system”, J. Fac. Sci. Univ. Tokyo. Sect. IA. Math., 12:2 (1966), 223–230 | MR | Zbl

[23] Karri Kh. B., Osnovaniya matematicheskoi logiki, Mir, M., 1969

[24] Raseva E., Sikorskii R., Matematika metamatematiki, Nauka, M., 1972

[25] McKay C. G., “The decidability of certain intermediate propositional logics”, J. Symbolic Logic, 33:2 (1968), 258–264 | DOI | MR | Zbl

[26] Yankov V. A., “Ob ischislenii slabogo zakona isklyuchennogo tretego”, Izv. AN SSSR. Ser. matem., 32:5 (1968), 1044–1051 | MR