The Gleason theorem for the field of rational numbers and residue fields
Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 584-591.

Voir la notice de l'article provenant de la source Math-Net.Ru

Charges $\mu$ taking values in a field $F$ and defined on orthomodular partially ordered sets (logics) of all projectors in some finite-dimensional linear space over $F$ are considered. In the cases where $F$ is the field of rational numbers or a residue field, the Gleason representation $\mu(P)=\operatorname{tr}(T_\mu P)$, where $T_\mu$ is a linear operator, is proved.
@article{MZM_1998_64_4_a10,
     author = {D. Kh. Mushtari},
     title = {The {Gleason} theorem for the field of rational numbers and residue fields},
     journal = {Matemati\v{c}eskie zametki},
     pages = {584--591},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a10/}
}
TY  - JOUR
AU  - D. Kh. Mushtari
TI  - The Gleason theorem for the field of rational numbers and residue fields
JO  - Matematičeskie zametki
PY  - 1998
SP  - 584
EP  - 591
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a10/
LA  - ru
ID  - MZM_1998_64_4_a10
ER  - 
%0 Journal Article
%A D. Kh. Mushtari
%T The Gleason theorem for the field of rational numbers and residue fields
%J Matematičeskie zametki
%D 1998
%P 584-591
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a10/
%G ru
%F MZM_1998_64_4_a10
D. Kh. Mushtari. The Gleason theorem for the field of rational numbers and residue fields. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 584-591. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a10/

[1] Gleason A. M., “Measures on the closed subspaces of a Hilbert space”, J. Math. Mech., 6:6 (1957), 885–893 | MR | Zbl

[2] Sherstnev A. N., “Ponyatie zaryada v nekommutativnoi skheme teorii mery”, Veroyatnostnye metody i kibernetika, no. 10–11, Kazan, 1974, 68–72 | Zbl

[3] Dorofeev S. V., Sherstnev A. N., “Funktsii repernogo vida i ikh primeneniya”, Izv. vuzov. Matem., 1990, no. 4, 23–29 | MR | Zbl

[4] Mushtari D. Kh., “Logiki proektorov v banakhovykh prostranstvakh”, Izv. vuzov. Matem., 1989, no. 8, 44–52 | MR