Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_3_a9, author = {V. S. Matveev}, title = {The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to {Liouville} metrics and waves on water captured by bottom irregularities}, journal = {Matemati\v{c}eskie zametki}, pages = {414--422}, publisher = {mathdoc}, volume = {64}, number = {3}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a9/} }
TY - JOUR AU - V. S. Matveev TI - The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities JO - Matematičeskie zametki PY - 1998 SP - 414 EP - 422 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a9/ LA - ru ID - MZM_1998_64_3_a9 ER -
%0 Journal Article %A V. S. Matveev %T The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities %J Matematičeskie zametki %D 1998 %P 414-422 %V 64 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a9/ %G ru %F MZM_1998_64_3_a9
V. S. Matveev. The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 414-422. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a9/
[1] Dobrokhotov S. Yu., “Asimptotiki poverkhnostnykh voln, zakhvachennykh beregami i neodnorodnostyami relefa dna”, Dokl. AN SSSR, 289:3 (1986), 575–579 | MR
[2] Le Blon P., Maisek L., Volny v okeane, T. 1, Mir, M., 1981
[3] Maslov V. P., Fedoryuk M. B., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976
[4] Dobrokhotov S. Yu., Zhevandrov P. N., Asimptoticheskie razlozheniya i kanonicheskii operator Maslova v lineinoi teorii poverkhnostnykh gravitatsionnykh voln: osnovnye uravneniya i konstruktsii, Preprint IPM AN SSSR No. 328, IPM, M., 1988
[5] Dobrokhotov S. Yu., Zhevandrov P. N., “Nestandartnye kharakteristiki i operatornyi metod Maslova v lineinykh zadachakh o neustanovivshikhsya volnakh na vode”, Funktsion. analiz i ego prilozh., 19:4 (1985), 43–54 | MR | Zbl
[6] Kosygin D. V., Minasov A. A., Sinai Ya. G., “Statisticheskie svoistva spektrov operatorov Laplasa–Beltrami na poverkhnostyakh Liuvillya”, UMN, 48:4 (292) (1993), 3–130 | MR | Zbl
[7] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | Zbl
[8] Selivanova E. N., “Traektornye izomorfizmy liuvillevykh sistem na dvumernom tore”, Matem. sb., 186:10 (1995), 141–160 | MR | Zbl
[9] Kolokoltsev V. N., Polinomialnye integraly geodezicheskikh potokov na kompaktnykh poverkhnostyakh, Diss. ... k. f.-m. n., MIEM, M., 1984