The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 414-422

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a set of examples of bottom reliefs for which there exist captured waves corresponding to quasimodes of the wave operator $\nabla D(x,y)\nabla$.
@article{MZM_1998_64_3_a9,
     author = {V. S. Matveev},
     title = {The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to {Liouville} metrics and waves on water captured by bottom irregularities},
     journal = {Matemati\v{c}eskie zametki},
     pages = {414--422},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a9/}
}
TY  - JOUR
AU  - V. S. Matveev
TI  - The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities
JO  - Matematičeskie zametki
PY  - 1998
SP  - 414
EP  - 422
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a9/
LA  - ru
ID  - MZM_1998_64_3_a9
ER  - 
%0 Journal Article
%A V. S. Matveev
%T The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities
%J Matematičeskie zametki
%D 1998
%P 414-422
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a9/
%G ru
%F MZM_1998_64_3_a9
V. S. Matveev. The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 414-422. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a9/