The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 414-422
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a set of examples of bottom reliefs for which there exist captured waves corresponding to quasimodes of the wave operator $\nabla D(x,y)\nabla$.
@article{MZM_1998_64_3_a9,
author = {V. S. Matveev},
title = {The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to {Liouville} metrics and waves on water captured by bottom irregularities},
journal = {Matemati\v{c}eskie zametki},
pages = {414--422},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a9/}
}
TY - JOUR AU - V. S. Matveev TI - The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities JO - Matematičeskie zametki PY - 1998 SP - 414 EP - 422 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a9/ LA - ru ID - MZM_1998_64_3_a9 ER -
%0 Journal Article %A V. S. Matveev %T The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities %J Matematičeskie zametki %D 1998 %P 414-422 %V 64 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a9/ %G ru %F MZM_1998_64_3_a9
V. S. Matveev. The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 414-422. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a9/