Subspaces of sequential spaces
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 407-413

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the space of continuous functions on the ordinary closed interval with the topology of pointwise convergence is not subsequential. In sequential spaces satisfying certain conditions, subspaces dense-in-themselves without convergent sequences are found; such subspaces are constructed in certain sequential compact spaces and semitopological groups.
@article{MZM_1998_64_3_a8,
     author = {V. I. Malykhin},
     title = {Subspaces of sequential spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {407--413},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a8/}
}
TY  - JOUR
AU  - V. I. Malykhin
TI  - Subspaces of sequential spaces
JO  - Matematičeskie zametki
PY  - 1998
SP  - 407
EP  - 413
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a8/
LA  - ru
ID  - MZM_1998_64_3_a8
ER  - 
%0 Journal Article
%A V. I. Malykhin
%T Subspaces of sequential spaces
%J Matematičeskie zametki
%D 1998
%P 407-413
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a8/
%G ru
%F MZM_1998_64_3_a8
V. I. Malykhin. Subspaces of sequential spaces. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 407-413. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a8/