Subspaces of sequential spaces
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 407-413
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the space of continuous functions on the ordinary closed interval with the topology of pointwise convergence is not subsequential. In sequential spaces satisfying certain conditions, subspaces dense-in-themselves without convergent sequences are found; such subspaces are constructed in certain sequential compact spaces and semitopological groups.
@article{MZM_1998_64_3_a8,
author = {V. I. Malykhin},
title = {Subspaces of sequential spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {407--413},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a8/}
}
V. I. Malykhin. Subspaces of sequential spaces. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 407-413. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a8/