Decrease rate of the probabilities of $\varepsilon$-deviations for the means of stationary processes
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 366-372
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic behavior as $n\to\infty$ of the normed sums $\sigma_n=n^{-1}\sum_{k=0}^{n-1}X_k$ for a stationary process $X=(X_n, n\in\mathbb Z)$ is studied. For a fixed $\varepsilon>0$, upper estimates for $\mathsf P\bigl(\sup_{k\ge n} |\sigma_k|\ge\varepsilon\bigr)$ as $n\to\infty$ are obtained.
@article{MZM_1998_64_3_a3,
author = {V. F. Gaposhkin},
title = {Decrease rate of the probabilities of $\varepsilon$-deviations for the means of stationary processes},
journal = {Matemati\v{c}eskie zametki},
pages = {366--372},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a3/}
}
TY - JOUR AU - V. F. Gaposhkin TI - Decrease rate of the probabilities of $\varepsilon$-deviations for the means of stationary processes JO - Matematičeskie zametki PY - 1998 SP - 366 EP - 372 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a3/ LA - ru ID - MZM_1998_64_3_a3 ER -
V. F. Gaposhkin. Decrease rate of the probabilities of $\varepsilon$-deviations for the means of stationary processes. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 366-372. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a3/