Stochastic stability of the invariant measure in a one-dimensional model of drilling
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 477-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1998_64_3_a19,
     author = {G. S. Chakvetadze},
     title = {Stochastic stability of the invariant measure in a one-dimensional model of drilling},
     journal = {Matemati\v{c}eskie zametki},
     pages = {477--480},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a19/}
}
TY  - JOUR
AU  - G. S. Chakvetadze
TI  - Stochastic stability of the invariant measure in a one-dimensional model of drilling
JO  - Matematičeskie zametki
PY  - 1998
SP  - 477
EP  - 480
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a19/
LA  - ru
ID  - MZM_1998_64_3_a19
ER  - 
%0 Journal Article
%A G. S. Chakvetadze
%T Stochastic stability of the invariant measure in a one-dimensional model of drilling
%J Matematičeskie zametki
%D 1998
%P 477-480
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a19/
%G ru
%F MZM_1998_64_3_a19
G. S. Chakvetadze. Stochastic stability of the invariant measure in a one-dimensional model of drilling. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a19/

[1] Lasota A., Rusek P., Arch. Gornicktwa, 19:3 (1974), 281–295

[2] Chakvetadze G., J. Dynam. Control Systems, 2:4 (1996), 485–502 | DOI | MR | Zbl

[3] Baladi V., Young L.-S., Comm. Math. Phys., 156 (1993), 355–385 | DOI | MR | Zbl

[4] Chakvetadze G., UMN, 52:4 (1997), 223–224 | MR | Zbl

[5] Rychlik M., Studia Math., 76 (1983), 69–80 | MR | Zbl

[6] Blank M. L., “Small perturbations of quasistochastic dynamical systems”, Tr. sem. im. I. G. Petrovskogo, 11, no. 6, Izd-vo Mosk. un-ta, M., 1986, 166–189 | MR

[7] Hofbauer F., Keller G., Math. Z., 180 (1982), 119–140 | DOI | MR | Zbl

[8] Baladi V., Young L.-S., Comm. Math. Phys., 166 (1994), 219–220 | DOI | MR | Zbl