Stochastic stability of the invariant measure in a one-dimensional model of drilling
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 477-480
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MZM_1998_64_3_a19,
author = {G. S. Chakvetadze},
title = {Stochastic stability of the invariant measure in a one-dimensional model of drilling},
journal = {Matemati\v{c}eskie zametki},
pages = {477--480},
year = {1998},
volume = {64},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a19/}
}
G. S. Chakvetadze. Stochastic stability of the invariant measure in a one-dimensional model of drilling. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a19/
[1] Lasota A., Rusek P., Arch. Gornicktwa, 19:3 (1974), 281–295
[2] Chakvetadze G., J. Dynam. Control Systems, 2:4 (1996), 485–502 | DOI | MR | Zbl
[3] Baladi V., Young L.-S., Comm. Math. Phys., 156 (1993), 355–385 | DOI | MR | Zbl
[4] Chakvetadze G., UMN, 52:4 (1997), 223–224 | MR | Zbl
[5] Rychlik M., Studia Math., 76 (1983), 69–80 | MR | Zbl
[6] Blank M. L., “Small perturbations of quasistochastic dynamical systems”, Tr. sem. im. I. G. Petrovskogo, 11, no. 6, Izd-vo Mosk. un-ta, M., 1986, 166–189 | MR
[7] Hofbauer F., Keller G., Math. Z., 180 (1982), 119–140 | DOI | MR | Zbl
[8] Baladi V., Young L.-S., Comm. Math. Phys., 166 (1994), 219–220 | DOI | MR | Zbl