On a multiplicative function on the set of shifted primes
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 457-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $f(n)$ is a multiplicative function taking a value $\xi$ on the set of primes such that $\xi^3=1$, $\xi\ne1$ and $f^3(p^r)=1$ for $r\ge2$, then there exists $\theta\in(0,1)$, for which $$ \biggl|\sum_{p\le x}f(p+1)\biggr|\le\theta\pi(x), $$ where $$ \pi(x)=\sum_{p\le x}1. $$
@article{MZM_1998_64_3_a14,
     author = {M. B. Khripunova},
     title = {On a multiplicative function on the set of shifted primes},
     journal = {Matemati\v{c}eskie zametki},
     pages = {457--464},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a14/}
}
TY  - JOUR
AU  - M. B. Khripunova
TI  - On a multiplicative function on the set of shifted primes
JO  - Matematičeskie zametki
PY  - 1998
SP  - 457
EP  - 464
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a14/
LA  - ru
ID  - MZM_1998_64_3_a14
ER  - 
%0 Journal Article
%A M. B. Khripunova
%T On a multiplicative function on the set of shifted primes
%J Matematičeskie zametki
%D 1998
%P 457-464
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a14/
%G ru
%F MZM_1998_64_3_a14
M. B. Khripunova. On a multiplicative function on the set of shifted primes. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 457-464. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a14/

[1] Meyer J., Thèse d'Etat, Université de Reims, Reims, 1982

[2] Hildebrand A., “Additive and multiplicative functions on shifted primes”, Proc. London Math. Soc. (3), 59 (1989), 209–232 | DOI | MR | Zbl

[3] Timofeev N. M., “Multiplikativnye funktsii na mnozhestve sdvinutykh prostykh”, Izv. AN SSSR. Ser. matem., 55 (1991), 1238–1256

[4] Elliott P. D. T. A., “The multiplicative group of rationals generated by the shifted primes, I”, J. Reine Angew. Math., 463 (1995), 169–216 | MR | Zbl

[5] Timofeev N. M., “Neravenstva Khardi–Ramanudzhana i Khalosa dlya sdvinutykh prostykh chisel”, Matem. zametki, 57:5 (1996), 747–764 | MR

[6] Halberstam H., Richert H.-E., Sieve Methods, Acad. Press, London, 1974 | Zbl