On a multiplicative function on the set of shifted primes
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 457-464
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that if $f(n)$ is a multiplicative function taking a value $\xi$ on the set of primes such that $\xi^3=1$, $\xi\ne1$ and $f^3(p^r)=1$ for $r\ge2$, then there exists $\theta\in(0,1)$, for which $$ \biggl|\sum_{p\le x}f(p+1)\biggr|\le\theta\pi(x), $$ where $$ \pi(x)=\sum_{p\le x}1. $$
@article{MZM_1998_64_3_a14,
author = {M. B. Khripunova},
title = {On a multiplicative function on the set of shifted primes},
journal = {Matemati\v{c}eskie zametki},
pages = {457--464},
year = {1998},
volume = {64},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a14/}
}
M. B. Khripunova. On a multiplicative function on the set of shifted primes. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 457-464. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a14/
[1] Meyer J., Thèse d'Etat, Université de Reims, Reims, 1982
[2] Hildebrand A., “Additive and multiplicative functions on shifted primes”, Proc. London Math. Soc. (3), 59 (1989), 209–232 | DOI | MR | Zbl
[3] Timofeev N. M., “Multiplikativnye funktsii na mnozhestve sdvinutykh prostykh”, Izv. AN SSSR. Ser. matem., 55 (1991), 1238–1256
[4] Elliott P. D. T. A., “The multiplicative group of rationals generated by the shifted primes, I”, J. Reine Angew. Math., 463 (1995), 169–216 | MR | Zbl
[5] Timofeev N. M., “Neravenstva Khardi–Ramanudzhana i Khalosa dlya sdvinutykh prostykh chisel”, Matem. zametki, 57:5 (1996), 747–764 | MR
[6] Halberstam H., Richert H.-E., Sieve Methods, Acad. Press, London, 1974 | Zbl