On a cardinal group invariant related to decompositions of Abelian groups
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 341-350
Voir la notice de l'article provenant de la source Math-Net.Ru
For each Abelian group $G$, a cardinal invariant $\chi(G)$ is introduced and its properties are studied. In the special case $G=\mathbb Z^n$, the cardinal $\chi\mathbb Z^n)$ is equal to the minimal cardinality of an essential subset of $\mathbb Z^n$, i.e., a of a subset $A\subset\mathbb Z^n$ such that, for any coloring of the group $\mathbb Z^n$ in $n$ colors, there exists an infinite one-color subset that is symmetric with respect to some point $\alpha$ of $A$. The estimate $n(n+1)/2\le\chi(\mathbb Z^n)2^n$ is proved for all $n$ and the relation $\chi(\mathbb Z^n)=n(n+1)/2$ for $n\le3$. The structure of essential subsets of cardinality $\chi(\mathbb Z^n)$ in $\mathbb Z^n$ is completely described for $n\le3$.
@article{MZM_1998_64_3_a1,
author = {T. O. Banakh},
title = {On a cardinal group invariant related to decompositions of {Abelian} groups},
journal = {Matemati\v{c}eskie zametki},
pages = {341--350},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a1/}
}
T. O. Banakh. On a cardinal group invariant related to decompositions of Abelian groups. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 341-350. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a1/