The best approximation to a class of functions of several variables by another class and related extremum problems
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 323-340

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the relationship between several extremum problems for unbounded linear operators of convolution type in the spaces $L_\gamma=L_\gamma(\mathbb R^m)$, $m\ge1$, $1\le\gamma\le\infty$. For the problem of calculating the modulus of continuity of the convolution operator $A$ on the function class $Q$ defined by a similar operator and for the Stechkin problem on the best approximation of the operator $A$ on the class $Q$ by bounded linear operators, we construct dual problems in dual spaces, which are the problems on, respectively, the best and the worst approximation to a class of functions by another class.
@article{MZM_1998_64_3_a0,
     author = {V. V. Arestov},
     title = {The best approximation to a class of functions of several variables by another class and related extremum problems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--340},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a0/}
}
TY  - JOUR
AU  - V. V. Arestov
TI  - The best approximation to a class of functions of several variables by another class and related extremum problems
JO  - Matematičeskie zametki
PY  - 1998
SP  - 323
EP  - 340
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a0/
LA  - ru
ID  - MZM_1998_64_3_a0
ER  - 
%0 Journal Article
%A V. V. Arestov
%T The best approximation to a class of functions of several variables by another class and related extremum problems
%J Matematičeskie zametki
%D 1998
%P 323-340
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a0/
%G ru
%F MZM_1998_64_3_a0
V. V. Arestov. The best approximation to a class of functions of several variables by another class and related extremum problems. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 323-340. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a0/