The Cauchy problem for the system of thermoelasticity equations in space
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 212-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of analytic continuation of the solution of the system of thermoelasticity equations in a bounded three-dimensional domain on the basis of known values of the solution and the corresponding stress on a part of the boundary, i.e., the Cauchy problem. We construct an approximate solution of the problem based on the method of Carleman's function.
@article{MZM_1998_64_2_a6,
     author = {T. I. Ishankulov and O. I. Makhmudov},
     title = {The {Cauchy} problem for the system of thermoelasticity equations in space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {212--217},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a6/}
}
TY  - JOUR
AU  - T. I. Ishankulov
AU  - O. I. Makhmudov
TI  - The Cauchy problem for the system of thermoelasticity equations in space
JO  - Matematičeskie zametki
PY  - 1998
SP  - 212
EP  - 217
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a6/
LA  - ru
ID  - MZM_1998_64_2_a6
ER  - 
%0 Journal Article
%A T. I. Ishankulov
%A O. I. Makhmudov
%T The Cauchy problem for the system of thermoelasticity equations in space
%J Matematičeskie zametki
%D 1998
%P 212-217
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a6/
%G ru
%F MZM_1998_64_2_a6
T. I. Ishankulov; O. I. Makhmudov. The Cauchy problem for the system of thermoelasticity equations in space. Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 212-217. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a6/

[1] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, VTs SO AN SSSR, Novosibirsk, 1962

[2] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Fizmatgiz, M., 1961

[3] Lavrentev M. M., “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | MR | Zbl

[4] Lavrentev M. M., “O zadache Koshi dlya lineinykh ellipticheskikh uravnenii vtorogo poryadka”, Dokl. AN SSSR, 112:2 (1957), 195–197 | MR | Zbl

[5] Mergelyan S. N., “Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadachi Koshi dlya uravneniya Laplasa”, UMN, 11:5 (1956), 3–26 | MR

[6] Yarmukhamedov Sh. Ya., “O zadache Koshi dlya uravneniya Laplasa”, Dokl. AN SSSR, 235:2 (1977), 281–283 | MR | Zbl

[7] Yarmukhamedov Sh. Ya., Ishankulov T. I., Makhmudov O. I., “O zadache Koshi dlya sistemy uravnenii teorii uprugosti v prostranstve”, Sib. matem. zh., 33:1 (1992), 186–190 | MR

[8] Ivanov V. K., “Zadacha Koshi dlya uravneniya Laplasa v beskonechnoi polose”, Differents. uravneniya, 1 (1965), 131–136 | MR | Zbl

[9] Aizenberg L. A., Tarkhanov N. N., “Abstraktnaya formula Karlemana”, Dokl. AN SSSR, 298:6 (1988), 1292–1296 | Zbl

[10] Makhmudov O. I., Zadacha Koshi dlya sistemy teorii uprugosti v prostranstve, Diss. ... k. f.-m. n., Novosibirsk, 1990

[11] Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii prostranstvennoi teorii uprugosti v peremescheniyakh”, Izv. vuzov. Matem., 1994, no. 1, 54–61 | MR | Zbl

[12] Tarkhanov N. N., “O matritse Karlemana dlya ellipticheskikh sistem”, Dokl. AN SSSR, 284:2 (1985), 294–297 | MR | Zbl

[13] Kupradze V. D., Gegelia T. G., Basheleishvili M. O., Burchuladze T. V., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976

[14] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[15] Dzharbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966