Topological groups in which each nowhere dense subset is closed
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 207-211
Voir la notice de l'article provenant de la source Math-Net.Ru
Assuming the validity of the combinatorial principle $p=\mathfrak C$, which follows from Martin's axiom, it is proved that an arbitrary nondiscrete metrizable group topology on an Abelian group can be strengthened to a nondiscrete group topology in which each nowhere dense subset is closed.
@article{MZM_1998_64_2_a5,
author = {E. G. Zelenyuk},
title = {Topological groups in which each nowhere dense subset is closed},
journal = {Matemati\v{c}eskie zametki},
pages = {207--211},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a5/}
}
E. G. Zelenyuk. Topological groups in which each nowhere dense subset is closed. Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 207-211. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a5/