Topological groups in which each nowhere dense subset is closed
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 207-211

Voir la notice de l'article provenant de la source Math-Net.Ru

Assuming the validity of the combinatorial principle $p=\mathfrak C$, which follows from Martin's axiom, it is proved that an arbitrary nondiscrete metrizable group topology on an Abelian group can be strengthened to a nondiscrete group topology in which each nowhere dense subset is closed.
@article{MZM_1998_64_2_a5,
     author = {E. G. Zelenyuk},
     title = {Topological groups in which each nowhere dense subset is closed},
     journal = {Matemati\v{c}eskie zametki},
     pages = {207--211},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a5/}
}
TY  - JOUR
AU  - E. G. Zelenyuk
TI  - Topological groups in which each nowhere dense subset is closed
JO  - Matematičeskie zametki
PY  - 1998
SP  - 207
EP  - 211
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a5/
LA  - ru
ID  - MZM_1998_64_2_a5
ER  - 
%0 Journal Article
%A E. G. Zelenyuk
%T Topological groups in which each nowhere dense subset is closed
%J Matematičeskie zametki
%D 1998
%P 207-211
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a5/
%G ru
%F MZM_1998_64_2_a5
E. G. Zelenyuk. Topological groups in which each nowhere dense subset is closed. Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 207-211. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a5/