On a property of $L_p$ spaces on semifinite von Neumann algebras
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 185-190
Voir la notice de l'article provenant de la source Math-Net.Ru
A characterization of the traces in a broad class of weights on von Neumann algebras is obtained. A new property of the “domain ideals” of these traces is proved. In the semifinite case, a relation for a faithful normal trace is established. This result is new even for the algebra of all bounded operators on a Hilbert space. Applications of the main result to the structure theory of von Neumann algebras and to the Köthe duality theory for ideal spaces of Segal measurable operators are given.
@article{MZM_1998_64_2_a2,
author = {A. M. Bikchentaev},
title = {On a property of $L_p$ spaces on semifinite von {Neumann} algebras},
journal = {Matemati\v{c}eskie zametki},
pages = {185--190},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a2/}
}
A. M. Bikchentaev. On a property of $L_p$ spaces on semifinite von Neumann algebras. Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 185-190. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a2/