Quasimodes of the two-dimensional quartic oscillator
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 297-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1998_64_2_a15,
     author = {V. V. Belov and V. A. Maksimov},
     title = {Quasimodes of the two-dimensional quartic oscillator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {297--301},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a15/}
}
TY  - JOUR
AU  - V. V. Belov
AU  - V. A. Maksimov
TI  - Quasimodes of the two-dimensional quartic oscillator
JO  - Matematičeskie zametki
PY  - 1998
SP  - 297
EP  - 301
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a15/
LA  - ru
ID  - MZM_1998_64_2_a15
ER  - 
%0 Journal Article
%A V. V. Belov
%A V. A. Maksimov
%T Quasimodes of the two-dimensional quartic oscillator
%J Matematičeskie zametki
%D 1998
%P 297-301
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a15/
%G ru
%F MZM_1998_64_2_a15
V. V. Belov; V. A. Maksimov. Quasimodes of the two-dimensional quartic oscillator. Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 297-301. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a15/

[1] Berry M. V., Les Houches Summer School on Theoretical Physics, Session 36 (Les Houches, 1981), North-Holland, Amsterdam, 1983, 171–271 | MR

[2] Gutzviller M., Chaos in Classical and Quantum Mechanics, Springer, New York, 1990

[3] Bohigas O., Tomsovic S., Ullmo D., Phys. Rep., 223 (1993), 43–133 | DOI | MR

[4] Carnegie A., Percival I. C., Phys. A, 17 (1984), 801–813 | DOI | MR | Zbl

[5] Eckhardt B., Phys. Rep., 163 (1988), 205–279 | DOI | MR

[6] Yoshida H., Phys. D, 29 (1987), 128–142 | DOI | MR | Zbl

[7] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977

[8] Belov V. V., Dobrokhotov S. Yu., Dokl. AN SSSR, 298:5 (1988), 1037–1042 | Zbl

[9] Belov V. V., Dobrokhotov S. Yu., TMF, 92 (1992), 215–254 | MR

[10] Babich V. M., “Sobstvennye funktsii, sosredotochennye v okrestnosti zamknutoi geodezicheskoi”, Zap. nauchn. seminarov LOMI, 9, Nauka, L., 1968, 15–63 | Zbl

[11] Lazutkin V. F., Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 34, VINITI, M., 1988, 135–174

[12] Voros A., Ann. Inst. H. Poincaré Phys. Théor., 24 (1976), 31–90 | MR

[13] Duistermaat J. J., Guillemin V. W., Invent. Math., 29 (1983), 63–73

[14] Ralston J. V., Comm. Math. Phys., 51 (1976), 219–242 | DOI | MR | Zbl

[15] Krakhnov A. D., Metody kachestvennoi teorii differentsialnykh uravnenii, no. 1, Izd-vo GGU, Gorkii, 66–74

[16] Gelfand I. M., Lidskii V. B., UMN, 10:1 (1955), 3–19 | MR

[17] Krein M. G., Pamyati A. A. Andronova (1901–1952), Sb. statei, M., 1955, 413–497

[18] Yoshida H., Celestial Mech. Dynam. Astronom., 32 (1984), 73–86 | Zbl

[19] Perelomov A., Generalized Coherent States and Their Applications, Springer, Berlin, 1986

[20] Landau L. D., Livshits E. M., Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika, nerelyativistskaya teoriya, Nauka, M., 1969

[21] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | Zbl

[22] Dobrokhotov S. Yu., Shafarevich A. I., “Momentum” Tunneling between Tori and the Splitting of Eigenvalues of the Beltrami–Laplace Operator on Liouville Surfaces, Preprint No. 599, IPM RAN, M., 1998