Mean value theorems for solutions of linear partial differential equations
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 260-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider generalized mean value theorems for solutions of linear differential equations with constant coefficients and zero right-hand side which satisfy the following homogeneity condition with respect to a given vector $\mathbf M$ with positive integer components: for each partial derivative occurring in the equation, the inner product of the vector composed of the orders of this derivative in each variable by the vector $\mathbf M$ is independent of the derivative. The main results of this paper generalize the well-known Zalcman theorem. Some corollaries are given.
@article{MZM_1998_64_2_a12,
     author = {A. V. Pokrovskii},
     title = {Mean value theorems for solutions of linear partial differential equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {260--272},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a12/}
}
TY  - JOUR
AU  - A. V. Pokrovskii
TI  - Mean value theorems for solutions of linear partial differential equations
JO  - Matematičeskie zametki
PY  - 1998
SP  - 260
EP  - 272
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a12/
LA  - ru
ID  - MZM_1998_64_2_a12
ER  - 
%0 Journal Article
%A A. V. Pokrovskii
%T Mean value theorems for solutions of linear partial differential equations
%J Matematičeskie zametki
%D 1998
%P 260-272
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a12/
%G ru
%F MZM_1998_64_2_a12
A. V. Pokrovskii. Mean value theorems for solutions of linear partial differential equations. Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 260-272. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a12/

[1] Zalcman L., “Mean values and differential equations”, Israel J. Math., 14 (1973), 339–352 | DOI | MR | Zbl

[2] Fulks W., “A mean value theorem for the heat equation”, Proc. Amer. Math. Soc., 17 (1966), 6–11 | DOI | MR | Zbl

[3] Kuptsov L. P., “O svoistve srednego dlya uravneniya teploprovodnosti”, Matem. zametki, 29:2 (1981), 211–222 | MR

[4] Khermander L., Analiz lineinykh differentsialnykh uravnenii s chastnymi proizvodnymi, T. 1, Mir, M., 1986

[5] Khermander L., Analiz lineinykh differentsialnykh uravnenii s chastnymi proizvodnymi, T. 2, Mir, M., 1986

[6] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968

[7] Van der Varden B. L., Algebra, Nauka, M., 1979 | Zbl

[8] Volevich L. R., “Lokalnye svoistva reshenii kvaziellipticheskikh sistem”, Matem. sb., 59 (101), Dop. vyp. (1962), 3–52 | MR | Zbl

[9] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[10] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977

[11] Grushin V. V., “Svyaz mezhdu lokalnymi i globalnymi svoistvami reshenii gipoellipticheskikh uravnenii s chastnymi proizvodnymi”, Matem. sb., 66 (108):4 (1965), 525–550 | Zbl