Mean value theorems for solutions of linear partial differential equations
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 260-272

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider generalized mean value theorems for solutions of linear differential equations with constant coefficients and zero right-hand side which satisfy the following homogeneity condition with respect to a given vector $\mathbf M$ with positive integer components: for each partial derivative occurring in the equation, the inner product of the vector composed of the orders of this derivative in each variable by the vector $\mathbf M$ is independent of the derivative. The main results of this paper generalize the well-known Zalcman theorem. Some corollaries are given.
@article{MZM_1998_64_2_a12,
     author = {A. V. Pokrovskii},
     title = {Mean value theorems for solutions of linear partial differential equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {260--272},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a12/}
}
TY  - JOUR
AU  - A. V. Pokrovskii
TI  - Mean value theorems for solutions of linear partial differential equations
JO  - Matematičeskie zametki
PY  - 1998
SP  - 260
EP  - 272
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a12/
LA  - ru
ID  - MZM_1998_64_2_a12
ER  - 
%0 Journal Article
%A A. V. Pokrovskii
%T Mean value theorems for solutions of linear partial differential equations
%J Matematičeskie zametki
%D 1998
%P 260-272
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a12/
%G ru
%F MZM_1998_64_2_a12
A. V. Pokrovskii. Mean value theorems for solutions of linear partial differential equations. Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 260-272. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a12/