Surgery of closed manifolds with dihedral fundamental group
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 238-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the obstruction groups to obtaining simple homotopy equivalence by surgery from normal degree 1 maps of closed manifolds with dihedral fundamental group are computed. The cases of trivial orientation for the dihedral group and nontrivial orientation for the order 2 cyclic subgroup are considered. New results concerning the Browder–Livesey groups and natural maps of $L$-groups arising in index 2 inclusions of the cyclic group into the dihedral group are obtained.
@article{MZM_1998_64_2_a10,
     author = {Yu. V. Muranov and D. Repov\v{s}},
     title = {Surgery of closed manifolds with dihedral fundamental group},
     journal = {Matemati\v{c}eskie zametki},
     pages = {238--250},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a10/}
}
TY  - JOUR
AU  - Yu. V. Muranov
AU  - D. Repovš
TI  - Surgery of closed manifolds with dihedral fundamental group
JO  - Matematičeskie zametki
PY  - 1998
SP  - 238
EP  - 250
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a10/
LA  - ru
ID  - MZM_1998_64_2_a10
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%A D. Repovš
%T Surgery of closed manifolds with dihedral fundamental group
%J Matematičeskie zametki
%D 1998
%P 238-250
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a10/
%G ru
%F MZM_1998_64_2_a10
Yu. V. Muranov; D. Repovš. Surgery of closed manifolds with dihedral fundamental group. Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 238-250. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a10/

[1] Wall C. T. C., Surgery on Compact Manifolds, Acad. Press, London, 1970

[2] Hambleton I., “Projective surgery obstructions”, Lecture Notes in Math., 967, 1982, 101–131 | MR | Zbl

[3] Hambleton I., Milgram R. J., Taylor L., Williams B., “Surgery with finite fundamental group”, Proc. London Math. Soc. (3), 56 (1988), 349–379 | DOI | MR | Zbl

[4] Morgan R. J., “Surgery with finite fundamental group. II: The oozing conjecture”, Pacific J. Math., 151 (1991), 117–149 | MR

[5] Browder W., Livesay R., “Fixed point free involutions of homotopy spheres”, Tôhoku J. Math. (2), 25 (1973), 69–88 | DOI | MR

[6] Cappell S. E., Shaneson J. L., “Pseudo-free actions”, Lecture Notes in Math., 763, 1979, 395–447 | MR | Zbl

[7] Ranicki A., “The $L$-theory of twisted quadratic extensions”, Canad. J. Math., 39 (1987), 345–364 | MR | Zbl

[8] Wall C. T. C., “On the classification of Hermitian forms. VI: Group rings”, Ann. of Math. (2), 103 (1976), 1–80 | DOI | MR | Zbl

[9] Muranov Yu. V., “Kogomologii Teita i gruppy Braudera–Livsi diedralnykh grupp”, Matem. zametki, 54:2 (1993), 44–55 | MR | Zbl

[10] Khemblton I., Kharshiladze A. F., “Spektralnaya posledovatelnost v teorii perestroek”, Matem. sb., 183:9 (1992), 3–14

[11] Muranov Yu. V., “Otnositelnye gruppy Uolla i dekoratsii”, Matem. sb., 185:12 (1994), 79–100 | Zbl

[12] Muranov Yu. V., “$K$-gruppy kvadratichnykh rasshirenii kolets”, Matem. zametki, 58:2 (1995), 272–280 | MR | Zbl

[13] Cavicchioli A., Muranov Y. V., Repovs D., Spectral Sequences in $K$-Theory for a Twisted Quadratic Extension, Preprint No 34, University of Ljubljana, 1996

[14] Hambleton I., Ranicki A., Taylor L., “Round $L$-theory”, J. Pure Appl. Algebra, 47 (1987), 131–134 | DOI | MR

[15] Hambleton I., Taylor L., Williams B., “An introduction to maps between surgery obstruction groups”, Lecture Notes in Math., 1051, 1984, 49–127 | MR | Zbl

[16] Kharshiladze A. F., “Perestroika mnogoobrazii s konechnymi fundamentalnymi gruppami”, UMN, 42:4 (1987), 55–85 | MR | Zbl