Finitely generated subgroups of free profinite groups and of some Galois groups
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 95-106

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for a (closed) subgroup $H$ of a free profinite or free prosolvable group $F$ of $\operatorname{rank}F>1$ such that $H$ contains a nontrivial composition subgroup $N$ of $F$, we have $\operatorname{rank}F\infty$ and $[F:H]\infty$.
@article{MZM_1998_64_1_a9,
     author = {O. V. Mel'nikov},
     title = {Finitely generated subgroups of free profinite groups and of some {Galois} groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {95--106},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a9/}
}
TY  - JOUR
AU  - O. V. Mel'nikov
TI  - Finitely generated subgroups of free profinite groups and of some Galois groups
JO  - Matematičeskie zametki
PY  - 1998
SP  - 95
EP  - 106
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a9/
LA  - ru
ID  - MZM_1998_64_1_a9
ER  - 
%0 Journal Article
%A O. V. Mel'nikov
%T Finitely generated subgroups of free profinite groups and of some Galois groups
%J Matematičeskie zametki
%D 1998
%P 95-106
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a9/
%G ru
%F MZM_1998_64_1_a9
O. V. Mel'nikov. Finitely generated subgroups of free profinite groups and of some Galois groups. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 95-106. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a9/