Finitely generated subgroups of free profinite groups and of some Galois groups
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 95-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for a (closed) subgroup $H$ of a free profinite or free prosolvable group $F$ of $\operatorname{rank}F>1$ such that $H$ contains a nontrivial composition subgroup $N$ of $F$, we have $\operatorname{rank}F\infty$ and $[F:H]\infty$.
@article{MZM_1998_64_1_a9,
     author = {O. V. Mel'nikov},
     title = {Finitely generated subgroups of free profinite groups and of some {Galois} groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {95--106},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a9/}
}
TY  - JOUR
AU  - O. V. Mel'nikov
TI  - Finitely generated subgroups of free profinite groups and of some Galois groups
JO  - Matematičeskie zametki
PY  - 1998
SP  - 95
EP  - 106
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a9/
LA  - ru
ID  - MZM_1998_64_1_a9
ER  - 
%0 Journal Article
%A O. V. Mel'nikov
%T Finitely generated subgroups of free profinite groups and of some Galois groups
%J Matematičeskie zametki
%D 1998
%P 95-106
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a9/
%G ru
%F MZM_1998_64_1_a9
O. V. Mel'nikov. Finitely generated subgroups of free profinite groups and of some Galois groups. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 95-106. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a9/

[1] Karras A., Solitar D., “On finitely generated subgroups of a free group”, Proc. Amer. Math. Soc., 22:1 (1969), 209–213 | DOI | MR | Zbl

[2] Melnikov O. V., “Kharakterizatsiya dostizhimykh podgrupp svobodnykh prokonechnykh grupp”, Dokl. AN BSSR, 22:8 (1978), 677–679 | MR

[3] Melnikov O. V., “Normalnye deliteli svobodnykh prokonechnykh grupp”, Izv. AN SSSR. Ser. matem., 42:1 (1978), 3–25 | MR | Zbl

[4] Lubotzky A., “Combinatorial group theory for pro-$p$-groups”, J. Pure Appl. Algebra, 25 (1982), 311–325 | DOI | MR | Zbl

[5] Hoechsmann K., “Zum Einbettungsproblem”, J. Reine Angew. Math., 229 (1968), 81–106 | MR | Zbl

[6] Uchida K., “Separably Hilbertian fields”, Kodai Math. J., 3:1 (1980), 83–95 | DOI | MR | Zbl

[7] Fried M. D., Jarden M., Field Arithmetic, Springer, Berlin, 1986

[8] Kuyk W., “Extensions de corps hilbertiens”, J. Algebra, 14:1 (1970), 112–124 | DOI | MR | Zbl

[9] Binz E., Neukirch J., Wenzel G. H., “A subgroup theorem for free products of profinite groups”, J. Algebra, 19:1 (1971), 104–109 | DOI | MR | Zbl

[10] Gaschütz W., “Zu einem von B. H. und H. Neumann gestellten Problem”, Math. Nachr., 14:4–6 (1955), 249–252 | DOI | MR