Removable singularities of plurisubharmonic functions of restricted growth
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 64-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a domain in $\mathbb C^n$, $n\ge2$, let $A$ be a connected complex $(n-1)$-dimensional submanifold of $G$, and let $\varphi$ be a plurisubharmonic function in $G\setminus A$. We obtain conditions on the growth of $\varphi$ that guarantee the local boundedness of $\varphi$ at a point a $a\in A\subset G$ and the existence of a plurisubharmonic extension of $\varphi$ to $G$.
@article{MZM_1998_64_1_a7,
     author = {N. G. Karpova},
     title = {Removable singularities of plurisubharmonic functions of restricted growth},
     journal = {Matemati\v{c}eskie zametki},
     pages = {64--72},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a7/}
}
TY  - JOUR
AU  - N. G. Karpova
TI  - Removable singularities of plurisubharmonic functions of restricted growth
JO  - Matematičeskie zametki
PY  - 1998
SP  - 64
EP  - 72
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a7/
LA  - ru
ID  - MZM_1998_64_1_a7
ER  - 
%0 Journal Article
%A N. G. Karpova
%T Removable singularities of plurisubharmonic functions of restricted growth
%J Matematičeskie zametki
%D 1998
%P 64-72
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a7/
%G ru
%F MZM_1998_64_1_a7
N. G. Karpova. Removable singularities of plurisubharmonic functions of restricted growth. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 64-72. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a7/

[1] Karpova N. G., “Ob ustranenii osobennostei plyurisubgarmonicheskikh funktsii”, Matem. zametki, 49:3 (1991), 35–40 | MR

[2] Siu Y.-T., “Analyticity of sets associated to Lelong numbers and the extension of closed positive currents”, Invent. Math., 27:1–2 (1974), 53–156 | DOI | MR | Zbl

[3] Chirka E. M., “Regulyarnost granits analiticheskikh mnozhestv”, Matem. sb., 117:3 (1982), 291–336 | MR | Zbl

[4] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985