Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 37-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider dynamical systems with two degrees of freedom whose configuration space is a torus and which admit first integrals polynomial in velocity. We obtain constructive criteria for the existence of conditional linear and quadratic integrals on the two-dimensional torus. Moreover, we show that under some additional conditions the degree of an “irreducible” integral of the geodesic flow on the torus does not exceed 2.
@article{MZM_1998_64_1_a4,
     author = {N. V. Denisova},
     title = {Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus},
     journal = {Matemati\v{c}eskie zametki},
     pages = {37--44},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a4/}
}
TY  - JOUR
AU  - N. V. Denisova
TI  - Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus
JO  - Matematičeskie zametki
PY  - 1998
SP  - 37
EP  - 44
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a4/
LA  - ru
ID  - MZM_1998_64_1_a4
ER  - 
%0 Journal Article
%A N. V. Denisova
%T Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus
%J Matematičeskie zametki
%D 1998
%P 37-44
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a4/
%G ru
%F MZM_1998_64_1_a4
N. V. Denisova. Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 37-44. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a4/

[1] Birkgof Dzh. D., Dinamicheskie sistemy, Gostekhizdat, M.–L., 1941

[2] Kozlov V. V., Denisova N. V., “Polinomialnye integraly geodezicheskikh potokov na dvumernom tore”, Matem. sb., 185:12 (1994), 49–64 | Zbl

[3] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorostyam pervym integralom”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 994–1010 | MR | Zbl

[4] Babenko I. K., Nekhoroshev N. N., “O kompleksnykh strukturakh na dvumernykh torakh, dopuskayuschikh metriki s netrivialnym kvadratichnym integralom”, Matem. zametki, 58:5 (1995), 643–652 | MR | Zbl

[5] Byalyi M. L., “O polinomialnykh po impulsam pervykh integralakh dlya mekhanicheskoi sistemy na dvumernom tore”, Funktsion. analiz i ego prilozh., 21:4 (1987), 64–65 | MR | Zbl

[6] Kozlov V. V., Treschev D. V., “Ob integriruemosti gamiltonovykh sistem s toricheskim prostranstvom polozhenii”, Matem. sb., 135 (177):1 (1988), 119–138

[7] Kozlov V. V., “O periodicheskikh traektoriyakh zaryada v magnitnom pole”, Regulyarnaya i khaoticheskaya dinamika (to appear)

[8] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968

[9] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, UdGU, Izhevsk, 1995