Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 37-44

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider dynamical systems with two degrees of freedom whose configuration space is a torus and which admit first integrals polynomial in velocity. We obtain constructive criteria for the existence of conditional linear and quadratic integrals on the two-dimensional torus. Moreover, we show that under some additional conditions the degree of an “irreducible” integral of the geodesic flow on the torus does not exceed 2.
@article{MZM_1998_64_1_a4,
     author = {N. V. Denisova},
     title = {Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus},
     journal = {Matemati\v{c}eskie zametki},
     pages = {37--44},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a4/}
}
TY  - JOUR
AU  - N. V. Denisova
TI  - Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus
JO  - Matematičeskie zametki
PY  - 1998
SP  - 37
EP  - 44
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a4/
LA  - ru
ID  - MZM_1998_64_1_a4
ER  - 
%0 Journal Article
%A N. V. Denisova
%T Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus
%J Matematičeskie zametki
%D 1998
%P 37-44
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a4/
%G ru
%F MZM_1998_64_1_a4
N. V. Denisova. Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 37-44. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a4/