Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 37-44
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider dynamical systems with two degrees of freedom whose configuration space is a torus and which admit first integrals polynomial in velocity. We obtain constructive criteria for the existence of conditional linear and quadratic integrals on the two-dimensional torus. Moreover, we show that under some additional conditions the degree of an “irreducible” integral of the geodesic flow on the torus does not exceed 2.
@article{MZM_1998_64_1_a4,
author = {N. V. Denisova},
title = {Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus},
journal = {Matemati\v{c}eskie zametki},
pages = {37--44},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a4/}
}
TY - JOUR AU - N. V. Denisova TI - Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus JO - Matematičeskie zametki PY - 1998 SP - 37 EP - 44 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a4/ LA - ru ID - MZM_1998_64_1_a4 ER -
N. V. Denisova. Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 37-44. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a4/