Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 24-36
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we establish the following results, which are the multidimensional generalizations of well-known theorems:
1) Suppose that a function $f\in C(\mathbb T^m)$ has no intervals of constancy in $\mathbb T^m$; then there exists a homeomorphism $\varphi\colon\mathbb T^m\to\mathbb T^m$ such that the Fourier series of the superposition $F=f\circ\varphi$ is divergent with respect to rectangles almost everywhere;
2) for any integrable function $f\in L^1(\mathbb T^m)$, with $|f(\mathbf x)|\geqslant\alpha>0$, $x\in\mathbb T^m$, there exists a signum function $\varepsilon(\mathbf x)=\pm 1$, $\mathbf x\in\mathbb T^m$ such that the Fourier series of the product $f(\mathbf x)\varepsilon(\mathbf x)$ is divergent with respect to rectangles almost everywhere.
@article{MZM_1998_64_1_a3,
author = {S. Galstyan and G. A. Karagulian},
title = {Divergence almost everywhere of rectangular partial sums of multiple {Fourier} series of bounded functions},
journal = {Matemati\v{c}eskie zametki},
pages = {24--36},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a3/}
}
TY - JOUR AU - S. Galstyan AU - G. A. Karagulian TI - Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions JO - Matematičeskie zametki PY - 1998 SP - 24 EP - 36 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a3/ LA - ru ID - MZM_1998_64_1_a3 ER -
%0 Journal Article %A S. Galstyan %A G. A. Karagulian %T Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions %J Matematičeskie zametki %D 1998 %P 24-36 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a3/ %G ru %F MZM_1998_64_1_a3
S. Galstyan; G. A. Karagulian. Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 24-36. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a3/