Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 24-36
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we establish the following results, which are the multidimensional generalizations of well-known theorems: 1) Suppose that a function $f\in C(\mathbb T^m)$ has no intervals of constancy in $\mathbb T^m$; then there exists a homeomorphism $\varphi\colon\mathbb T^m\to\mathbb T^m$ such that the Fourier series of the superposition $F=f\circ\varphi$ is divergent with respect to rectangles almost everywhere; 2) for any integrable function $f\in L^1(\mathbb T^m)$, with $|f(\mathbf x)|\geqslant\alpha>0$, $x\in\mathbb T^m$, there exists a signum function $\varepsilon(\mathbf x)=\pm 1$, $\mathbf x\in\mathbb T^m$ such that the Fourier series of the product $f(\mathbf x)\varepsilon(\mathbf x)$ is divergent with respect to rectangles almost everywhere.
@article{MZM_1998_64_1_a3,
author = {S. Galstyan and G. A. Karagulian},
title = {Divergence almost everywhere of rectangular partial sums of multiple {Fourier} series of bounded functions},
journal = {Matemati\v{c}eskie zametki},
pages = {24--36},
year = {1998},
volume = {64},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a3/}
}
TY - JOUR AU - S. Galstyan AU - G. A. Karagulian TI - Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions JO - Matematičeskie zametki PY - 1998 SP - 24 EP - 36 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a3/ LA - ru ID - MZM_1998_64_1_a3 ER -
S. Galstyan; G. A. Karagulian. Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 24-36. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a3/
[1] Olevskii A. M., “Modifikatsii funktsii i ryady Fure”, UMN, 40:3 (1984), 157–193 | MR
[2] Bohr H., “Über einen Satz von J. Pal”, Acta Sci. Math. (Szeged), 7 (1935), 129–135 | Zbl
[3] Saakyan A. A., “Integralnye moduli gladkosti i koeffitsienty Fure u superpozitsii funktsii”, Matem. sb., 110:4 (1979), 597–608 | MR
[4] Kahane J.-P., Kaznelson Y., “Series de Fourier des functions bornées”, Mem. Paul Turan, Studia Pure Math., ed. P. Erdös, Akad. Kiadó, Budapest, 1983, 395–410 | MR
[5] Fefferman Ch., “On the divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl