Reconstruction of Sturm--Liouville differential operators with singularities inside the interval
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 143-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse spectral problem for Sturm–Liouville differential operators on a finite interval is studied for an arbitrary and finite number of regular singular points inside the interval. A uniqueness theorem is proved; necessary and sufficient conditions and a procedure for the solution of the inverse problem are obtained.
@article{MZM_1998_64_1_a14,
     author = {V. A. Yurko},
     title = {Reconstruction of {Sturm--Liouville} differential operators with singularities inside the interval},
     journal = {Matemati\v{c}eskie zametki},
     pages = {143--156},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a14/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Reconstruction of Sturm--Liouville differential operators with singularities inside the interval
JO  - Matematičeskie zametki
PY  - 1998
SP  - 143
EP  - 156
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a14/
LA  - ru
ID  - MZM_1998_64_1_a14
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Reconstruction of Sturm--Liouville differential operators with singularities inside the interval
%J Matematičeskie zametki
%D 1998
%P 143-156
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a14/
%G ru
%F MZM_1998_64_1_a14
V. A. Yurko. Reconstruction of Sturm--Liouville differential operators with singularities inside the interval. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 143-156. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a14/

[1] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977

[2] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984

[3] Stashevskaya V. V., “Ob obratnykh zadachakh spektralnogo analiza dlya odnogo klassa differentsialnykh uravnenii”, Dokl. AN SSSR, 93:3 (1953), 409–412

[4] Gasymov M. G., “Opredelenie uravneniya Shturma–Liuvillya s osobennostyu po dvum spektram”, Dokl. AN SSSR, 161 (1965), 274–276 | MR | Zbl

[5] Zhornitskaya L. A., Serov V. S., “Ob odnoi teoreme edinstvennosti dlya operatora Shturma–Liuvillya na otrezke s potentsialom, imeyuschim neintegriruemuyu osobennost”, Differents. uravneniya, 29:12 (1993), 2125–2134 | MR | Zbl

[6] Carlson R., “Inverse spectral theory for some singular Sturm–Liouville problems”, J. Differential Equations, 106 (1993), 121–140 | DOI | MR | Zbl

[7] Yurko V. A., “Obratnaya zadacha dlya differentsialnykh uravnenii s osobennostyu”, Differents. uravneniya, 28:8 (1992), 1355–1362 | MR | Zbl

[8] Yurko V. A., “On higher-order differential operators with a singular point”, Inverse Problems, 9 (1993), 495–502 | DOI | MR | Zbl

[9] Yurko V. A., “O differentsialnykh operatorakh vysshikh poryadkov s regulyarnoi osobennostyu”, Matem. sb., 186:6 (1995), 133–160 | MR | Zbl

[10] Levinson N., “The inverse Sturm–Liouville problem”, Math. Tidsskr. Ser. B, 2–3 (1949), 25–30

[11] Leibenzon Z. L., “Obratnaya zadacha spektralnogo analiza dlya differentsialnykh operatorov vysshikh poryadkov”, Tr. MMO, 15, URSS, M., 1966, 70–144 | MR | Zbl

[12] Borovikov V. A., “O zadache Shturma–Liuvillya s neregulyarnoi asimptotikoi sobstvennykh znachenii”, Matem. zametki, 50:6 (1991), 43–51 | MR

[13] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | Zbl

[14] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, Nauka, M., 1967

[15] Borg G., “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe”, Acta Math., 78 (1946), 1–96 | DOI | MR | Zbl