Reconstruction of Sturm--Liouville differential operators with singularities inside the interval
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 143-156
Voir la notice de l'article provenant de la source Math-Net.Ru
The inverse spectral problem for Sturm–Liouville differential operators on a finite interval is studied for an arbitrary and finite number of regular singular points inside the interval. A uniqueness theorem is proved; necessary and sufficient conditions and a procedure for the solution of the inverse problem are obtained.
@article{MZM_1998_64_1_a14,
author = {V. A. Yurko},
title = {Reconstruction of {Sturm--Liouville} differential operators with singularities inside the interval},
journal = {Matemati\v{c}eskie zametki},
pages = {143--156},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a14/}
}
TY - JOUR AU - V. A. Yurko TI - Reconstruction of Sturm--Liouville differential operators with singularities inside the interval JO - Matematičeskie zametki PY - 1998 SP - 143 EP - 156 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a14/ LA - ru ID - MZM_1998_64_1_a14 ER -
V. A. Yurko. Reconstruction of Sturm--Liouville differential operators with singularities inside the interval. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 143-156. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a14/