Reconstruction of Sturm--Liouville differential operators with singularities inside the interval
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 143-156

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse spectral problem for Sturm–Liouville differential operators on a finite interval is studied for an arbitrary and finite number of regular singular points inside the interval. A uniqueness theorem is proved; necessary and sufficient conditions and a procedure for the solution of the inverse problem are obtained.
@article{MZM_1998_64_1_a14,
     author = {V. A. Yurko},
     title = {Reconstruction of {Sturm--Liouville} differential operators with singularities inside the interval},
     journal = {Matemati\v{c}eskie zametki},
     pages = {143--156},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a14/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Reconstruction of Sturm--Liouville differential operators with singularities inside the interval
JO  - Matematičeskie zametki
PY  - 1998
SP  - 143
EP  - 156
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a14/
LA  - ru
ID  - MZM_1998_64_1_a14
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Reconstruction of Sturm--Liouville differential operators with singularities inside the interval
%J Matematičeskie zametki
%D 1998
%P 143-156
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a14/
%G ru
%F MZM_1998_64_1_a14
V. A. Yurko. Reconstruction of Sturm--Liouville differential operators with singularities inside the interval. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 143-156. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a14/