Maximal submodules and locally perfect rings
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 136-142

Voir la notice de l'article provenant de la source Math-Net.Ru

Rings over which every nonzero right module has a maximal submodule are called right Bass rings. For a ring $A$ module-finite over its center $C$, the equivalence of the following conditions is proved: (1) $A$ is a tight Bass ring; (2) $A$ is a left Bass ring; (3) $A/J(A)$ is a regular ring, and $J(A)$ is a right and left $t$-nilpotent ideal.
@article{MZM_1998_64_1_a13,
     author = {A. A. Tuganbaev},
     title = {Maximal submodules and locally perfect rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {136--142},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a13/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Maximal submodules and locally perfect rings
JO  - Matematičeskie zametki
PY  - 1998
SP  - 136
EP  - 142
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a13/
LA  - ru
ID  - MZM_1998_64_1_a13
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Maximal submodules and locally perfect rings
%J Matematičeskie zametki
%D 1998
%P 136-142
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a13/
%G ru
%F MZM_1998_64_1_a13
A. A. Tuganbaev. Maximal submodules and locally perfect rings. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 136-142. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a13/