Maximal submodules and locally perfect rings
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 136-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

Rings over which every nonzero right module has a maximal submodule are called right Bass rings. For a ring $A$ module-finite over its center $C$, the equivalence of the following conditions is proved: (1) $A$ is a tight Bass ring; (2) $A$ is a left Bass ring; (3) $A/J(A)$ is a regular ring, and $J(A)$ is a right and left $t$-nilpotent ideal.
@article{MZM_1998_64_1_a13,
     author = {A. A. Tuganbaev},
     title = {Maximal submodules and locally perfect rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {136--142},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a13/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Maximal submodules and locally perfect rings
JO  - Matematičeskie zametki
PY  - 1998
SP  - 136
EP  - 142
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a13/
LA  - ru
ID  - MZM_1998_64_1_a13
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Maximal submodules and locally perfect rings
%J Matematičeskie zametki
%D 1998
%P 136-142
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a13/
%G ru
%F MZM_1998_64_1_a13
A. A. Tuganbaev. Maximal submodules and locally perfect rings. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 136-142. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a13/

[1] Hamsher R. M., “Commutative rings over which every module has a maximal submodule”, Proc. Amer. Math. Soc., 18:6 (1967), 1133–1137 | DOI | MR | Zbl

[2] Faith C., “Locally perfect commutative rings are those whose modules have maximal submodules”, Comm. Algebra, 22:13 (1995), 4885–4886 | DOI | MR

[3] Dischinger F., “Sur les anneaux fortement $\pi$-reguliers”, C. R. Acad. Sci. Paris. Sér. A, 283 (1976), 571–573 | MR | Zbl

[4] Azumaya G., “Strongly $\pi$-regular rings”, J. Fac. Sci. Hokkaido Univ. Ser. I, 13 (1954), 34–39 | MR

[5] Goodearl K. R., Warfield R. B., “Algebras over zero-dimensional rings”, Math. Ann., 223 (1976), 157–168 | DOI | MR | Zbl

[6] Bass H., “Finistic dimension and a homological generalization of semiprimary rings”, Trans. Amer. Math. Soc., 95:3 (1960), 466–488 | DOI | MR | Zbl

[7] Fisher J. V., Snider R. L., “On the Von Neumann regularity of rings with regular prime factor rings”, Pacific J. Math., 54:1 (1974), 135–144 | MR | Zbl

[8] Armendariz E. P., Fisher J. V., Steinberg S. A., “Central localizations of regular rings”, Proc. Amer. Math. Soc., 46:3 (1974), 315–321 | DOI | MR | Zbl

[9] Kash F., Moduli i koltsa, Mir, M., 1981

[10] Bass Kh., Algebraicheskaya $K$-teoriya, Mir, M., 1973