Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_1_a13, author = {A. A. Tuganbaev}, title = {Maximal submodules and locally perfect rings}, journal = {Matemati\v{c}eskie zametki}, pages = {136--142}, publisher = {mathdoc}, volume = {64}, number = {1}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a13/} }
A. A. Tuganbaev. Maximal submodules and locally perfect rings. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 136-142. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a13/
[1] Hamsher R. M., “Commutative rings over which every module has a maximal submodule”, Proc. Amer. Math. Soc., 18:6 (1967), 1133–1137 | DOI | MR | Zbl
[2] Faith C., “Locally perfect commutative rings are those whose modules have maximal submodules”, Comm. Algebra, 22:13 (1995), 4885–4886 | DOI | MR
[3] Dischinger F., “Sur les anneaux fortement $\pi$-reguliers”, C. R. Acad. Sci. Paris. Sér. A, 283 (1976), 571–573 | MR | Zbl
[4] Azumaya G., “Strongly $\pi$-regular rings”, J. Fac. Sci. Hokkaido Univ. Ser. I, 13 (1954), 34–39 | MR
[5] Goodearl K. R., Warfield R. B., “Algebras over zero-dimensional rings”, Math. Ann., 223 (1976), 157–168 | DOI | MR | Zbl
[6] Bass H., “Finistic dimension and a homological generalization of semiprimary rings”, Trans. Amer. Math. Soc., 95:3 (1960), 466–488 | DOI | MR | Zbl
[7] Fisher J. V., Snider R. L., “On the Von Neumann regularity of rings with regular prime factor rings”, Pacific J. Math., 54:1 (1974), 135–144 | MR | Zbl
[8] Armendariz E. P., Fisher J. V., Steinberg S. A., “Central localizations of regular rings”, Proc. Amer. Math. Soc., 46:3 (1974), 315–321 | DOI | MR | Zbl
[9] Kash F., Moduli i koltsa, Mir, M., 1981
[10] Bass Kh., Algebraicheskaya $K$-teoriya, Mir, M., 1973