Maximal submodules and locally perfect rings
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 136-142
Voir la notice de l'article provenant de la source Math-Net.Ru
Rings over which every nonzero right module has a maximal submodule are called right Bass rings. For a ring $A$ module-finite over its center $C$, the equivalence of the following conditions is proved:
(1) $A$ is a tight Bass ring;
(2) $A$ is a left Bass ring;
(3) $A/J(A)$ is a regular ring, and $J(A)$ is a right and left $t$-nilpotent ideal.
@article{MZM_1998_64_1_a13,
author = {A. A. Tuganbaev},
title = {Maximal submodules and locally perfect rings},
journal = {Matemati\v{c}eskie zametki},
pages = {136--142},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a13/}
}
A. A. Tuganbaev. Maximal submodules and locally perfect rings. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 136-142. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a13/