Width of parametric resonance regions for equations on a torus
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 129-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present new proofs of the theorem on the width of the forbidden regions for the Hill equation with a small potential and the theorem on the width of the parametric resonance regions for a first-order differential equation on a torus. These results are special cases of the theorem proved in this paper by the normal form method.
@article{MZM_1998_64_1_a12,
     author = {S. Yu. Sadov},
     title = {Width of parametric resonance regions for equations on a torus},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--135},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a12/}
}
TY  - JOUR
AU  - S. Yu. Sadov
TI  - Width of parametric resonance regions for equations on a torus
JO  - Matematičeskie zametki
PY  - 1998
SP  - 129
EP  - 135
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a12/
LA  - ru
ID  - MZM_1998_64_1_a12
ER  - 
%0 Journal Article
%A S. Yu. Sadov
%T Width of parametric resonance regions for equations on a torus
%J Matematičeskie zametki
%D 1998
%P 129-135
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a12/
%G ru
%F MZM_1998_64_1_a12
S. Yu. Sadov. Width of parametric resonance regions for equations on a torus. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 129-135. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a12/

[1] Arnold V. I., “Zamechaniya o teorii vozmuschenii dlya zadach tipa Mate”, UMN, 38:4 (1983), 189–203 | MR | Zbl

[2] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Dinamicheskie sistemy – I, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 1, VINITI, M., 1985, 7–140

[3] Galkin O. G., “Resonance regions for Mathieu type dynamical systems on a torus”, Phys. D, 39 (1989), 287–298 | DOI | MR | Zbl

[4] Galkin O. G., “Fazovyi zakhvat dlya vektornykh polei na tore tipa Mate”, Funktsion. analiz i ego prilozh., 26:1 (1992), 1–8 | MR | Zbl

[5] Galkin O. G., “Fazovyi zakhvat dlya otobrazhenii tora tipa Mate”, Funktsion. analiz i ego prilozh., 27:1 (1992), 1–11 | MR

[6] Sadov S. Yu., Ploskie dvizheniya pochti simmetrichnogo sputnika otnositelno tsentra mass s ratsionalnymi chislami vrascheniya, Preprint No 31, IPM im. M. V. Keldysha RAN, M., 1997

[7] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | Zbl