Width of parametric resonance regions for equations on a torus
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 129-135

Voir la notice de l'article provenant de la source Math-Net.Ru

We present new proofs of the theorem on the width of the forbidden regions for the Hill equation with a small potential and the theorem on the width of the parametric resonance regions for a first-order differential equation on a torus. These results are special cases of the theorem proved in this paper by the normal form method.
@article{MZM_1998_64_1_a12,
     author = {S. Yu. Sadov},
     title = {Width of parametric resonance regions for equations on a torus},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--135},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a12/}
}
TY  - JOUR
AU  - S. Yu. Sadov
TI  - Width of parametric resonance regions for equations on a torus
JO  - Matematičeskie zametki
PY  - 1998
SP  - 129
EP  - 135
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a12/
LA  - ru
ID  - MZM_1998_64_1_a12
ER  - 
%0 Journal Article
%A S. Yu. Sadov
%T Width of parametric resonance regions for equations on a torus
%J Matematičeskie zametki
%D 1998
%P 129-135
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a12/
%G ru
%F MZM_1998_64_1_a12
S. Yu. Sadov. Width of parametric resonance regions for equations on a torus. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 129-135. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a12/