Smoothness of generalized solutions of boundary value problems for certain degenerate nonlinear ordinary differential equations
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 882-890
Voir la notice de l'article provenant de la source Math-Net.Ru
The variational method is applied to the study of a boundary value problem of the first kind for a class of nonlinear ordinary differential equations of order $2r$ with strong degeneracy at the endpoints of the interval $(a,b)$. An inequality is obtained in which the norm of the solution $U$ of the problem under study in the sense of $W_{p,\alpha}^r(a,b)$ is estimated from above by the norms of the given functions $\Phi(x)$ and $F(x)$.
@article{MZM_1998_63_6_a9,
author = {Yu. D. Salmanov},
title = {Smoothness of generalized solutions of boundary value problems for certain degenerate nonlinear ordinary differential equations},
journal = {Matemati\v{c}eskie zametki},
pages = {882--890},
publisher = {mathdoc},
volume = {63},
number = {6},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a9/}
}
TY - JOUR AU - Yu. D. Salmanov TI - Smoothness of generalized solutions of boundary value problems for certain degenerate nonlinear ordinary differential equations JO - Matematičeskie zametki PY - 1998 SP - 882 EP - 890 VL - 63 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a9/ LA - ru ID - MZM_1998_63_6_a9 ER -
%0 Journal Article %A Yu. D. Salmanov %T Smoothness of generalized solutions of boundary value problems for certain degenerate nonlinear ordinary differential equations %J Matematičeskie zametki %D 1998 %P 882-890 %V 63 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a9/ %G ru %F MZM_1998_63_6_a9
Yu. D. Salmanov. Smoothness of generalized solutions of boundary value problems for certain degenerate nonlinear ordinary differential equations. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 882-890. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a9/