Smoothness of generalized solutions of boundary value problems for certain degenerate nonlinear ordinary differential equations
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 882-890.

Voir la notice de l'article provenant de la source Math-Net.Ru

The variational method is applied to the study of a boundary value problem of the first kind for a class of nonlinear ordinary differential equations of order $2r$ with strong degeneracy at the endpoints of the interval $(a,b)$. An inequality is obtained in which the norm of the solution $U$ of the problem under study in the sense of $W_{p,\alpha}^r(a,b)$ is estimated from above by the norms of the given functions $\Phi(x)$ and $F(x)$.
@article{MZM_1998_63_6_a9,
     author = {Yu. D. Salmanov},
     title = {Smoothness of generalized solutions of boundary value problems for certain degenerate nonlinear ordinary differential equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {882--890},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a9/}
}
TY  - JOUR
AU  - Yu. D. Salmanov
TI  - Smoothness of generalized solutions of boundary value problems for certain degenerate nonlinear ordinary differential equations
JO  - Matematičeskie zametki
PY  - 1998
SP  - 882
EP  - 890
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a9/
LA  - ru
ID  - MZM_1998_63_6_a9
ER  - 
%0 Journal Article
%A Yu. D. Salmanov
%T Smoothness of generalized solutions of boundary value problems for certain degenerate nonlinear ordinary differential equations
%J Matematičeskie zametki
%D 1998
%P 882-890
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a9/
%G ru
%F MZM_1998_63_6_a9
Yu. D. Salmanov. Smoothness of generalized solutions of boundary value problems for certain degenerate nonlinear ordinary differential equations. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 882-890. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a9/

[1] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, M., 1977

[2] Lizorkin P. I., Nikolskii S. M., “Koertsitivnoe svoistvo ellipticheskikh uravnenii s vyrozhdeniem. Variatsionnyi metod”, Tr. MIAN, 157, Nauka, M., 1981, 90–118 | MR | Zbl

[3] Salmanov Yu. D., “Vesovye klassy funktsii s vyrozhdeniem na mnogoobraziyakh lyubykh izmerenii”, Dokl. AN SSSR, 294:3 (1987), 539–542 | MR | Zbl

[4] Salmanov Yu. D., “Sledy funktsii iz vesovykh klassov na mnogoobraziyakh i obratnye teoremy vlozheniya”, Dokl. AN SSSR, 319:4 (1991), 823–826 | Zbl