Noncompact leaves of foliations of Morse forms
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 862-865
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper foliations determined by Morse forms on compact manifolds are considered. An inequality involving the number of connected components of the set formed by noncompact leaves, the number of homologically independent compact leaves, and the number of singular points of the corresponding Morse form is obtained.
@article{MZM_1998_63_6_a6,
author = {I. A. Melnikova},
title = {Noncompact leaves of foliations of {Morse} forms},
journal = {Matemati\v{c}eskie zametki},
pages = {862--865},
year = {1998},
volume = {63},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a6/}
}
I. A. Melnikova. Noncompact leaves of foliations of Morse forms. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 862-865. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a6/
[1] Melnikova I. A., “Osobye tochki morsovskoi formy i sloeniya”, Vestn. MGU. Ser. 1. Matem., mekh., 1996, no. 4, 37–40 | MR | Zbl
[2] Arnoux P., Levitt G., “Sur l'unique ergodicite des 1-formes fermées singulières”, Invent. Math., 84 (1986), 141–156 | DOI | MR | Zbl
[3] Melnikova I. A., Kompaktnye sloeniya morsovskikh form, Diss. ... k. f.-m. n., MGU, M., 1996
[4] Kharari F., Teoriya grafov, Mir, M., 1973