Noncompact leaves of foliations of Morse forms
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 862-865.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper foliations determined by Morse forms on compact manifolds are considered. An inequality involving the number of connected components of the set formed by noncompact leaves, the number of homologically independent compact leaves, and the number of singular points of the corresponding Morse form is obtained.
@article{MZM_1998_63_6_a6,
     author = {I. A. Melnikova},
     title = {Noncompact leaves of foliations of {Morse} forms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {862--865},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a6/}
}
TY  - JOUR
AU  - I. A. Melnikova
TI  - Noncompact leaves of foliations of Morse forms
JO  - Matematičeskie zametki
PY  - 1998
SP  - 862
EP  - 865
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a6/
LA  - ru
ID  - MZM_1998_63_6_a6
ER  - 
%0 Journal Article
%A I. A. Melnikova
%T Noncompact leaves of foliations of Morse forms
%J Matematičeskie zametki
%D 1998
%P 862-865
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a6/
%G ru
%F MZM_1998_63_6_a6
I. A. Melnikova. Noncompact leaves of foliations of Morse forms. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 862-865. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a6/

[1] Melnikova I. A., “Osobye tochki morsovskoi formy i sloeniya”, Vestn. MGU. Ser. 1. Matem., mekh., 1996, no. 4, 37–40 | MR | Zbl

[2] Arnoux P., Levitt G., “Sur l'unique ergodicite des 1-formes fermées singulières”, Invent. Math., 84 (1986), 141–156 | DOI | MR | Zbl

[3] Melnikova I. A., Kompaktnye sloeniya morsovskikh form, Diss. ... k. f.-m. n., MGU, M., 1996

[4] Kharari F., Teoriya grafov, Mir, M., 1973