Multidimensional conjugation operators and deformations of the classes $Z(\omega^{(2)};C(T^m))$
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 853-861.

Voir la notice de l'article provenant de la source Math-Net.Ru

The smoothness of conjugate functions of several variables is studied in terms of the second moduli of smoothness. It is proved that in a sufficiently general case the invariance of the classes considered is violated in just the same way as for classes specified by moduli of continuity.
@article{MZM_1998_63_6_a5,
     author = {M. M. Lekishvili and A. N. Danelia},
     title = {Multidimensional conjugation operators and deformations of the classes $Z(\omega^{(2)};C(T^m))$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {853--861},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a5/}
}
TY  - JOUR
AU  - M. M. Lekishvili
AU  - A. N. Danelia
TI  - Multidimensional conjugation operators and deformations of the classes $Z(\omega^{(2)};C(T^m))$
JO  - Matematičeskie zametki
PY  - 1998
SP  - 853
EP  - 861
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a5/
LA  - ru
ID  - MZM_1998_63_6_a5
ER  - 
%0 Journal Article
%A M. M. Lekishvili
%A A. N. Danelia
%T Multidimensional conjugation operators and deformations of the classes $Z(\omega^{(2)};C(T^m))$
%J Matematičeskie zametki
%D 1998
%P 853-861
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a5/
%G ru
%F MZM_1998_63_6_a5
M. M. Lekishvili; A. N. Danelia. Multidimensional conjugation operators and deformations of the classes $Z(\omega^{(2)};C(T^m))$. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 853-861. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a5/

[1] Zhizhiashvili L. V., “O sopryazhennykh funktsiyakh peremennykh”, Dokl. AN SSSR, 218:3 (1974), 517–518 | MR | Zbl

[2] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | Zbl

[3] Nikolskii S. M., “Ryad Fure funktsii s dannym modulem nepreryvnosti”, Dokl. AN SSSR, 52:3 (1946), 191–194 | MR

[4] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | Zbl

[5] Zhizhiashvili L. V., “O nekotorykh voprosakh iz teorii prostykh i kratnykh trigonometricheskikh i ortogonalnykh ryadov”, UMN, 28:2 (1973), 65–119 | MR

[6] Zhizhiashvili L. V., Nekotorye voprosy mnogomernogo garmonicheskogo analiza, Izd-vo Tbilisskogo un-ta, Tbilisi, 1983 | Zbl

[7] Zhizhiashvili L. V., Nekotorye voprosy teorii trigonometricheskikh ryadov Fure i ikh sopryazhennykh, Izd-vo Tbilisskogo un-ta, Tbilisi, 1993

[8] Bari N. K., Trigonometricheskie ryady, M., 1961

[9] Zygmund A., “Smooth functions”, Duke Math. J., 12 (1945), 47–76 | DOI | MR | Zbl

[10] Bari N. K., “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izv. AN SSSR. Ser. matem., 19:5 (1955), 285–302 | MR | Zbl

[11] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, URSS, M., 1956, 484–522 | MR

[12] Cesari L., “Sulle serie di Fourier delle funzioni lipschitziane di piu variabili”, Ann. Sci. École Norm. Sup. (2), 7 (1938), 279–295 | Zbl

[13] Zhak I. E., “Po povodu odnoi teoremy L. Chezari o sopryazhennykh funktsiyakh dvukh peremennykh”, Dokl. AN SSSR, 87:6 (1952), 877–880 | MR

[14] Lekishvili M. M., “Mnogomernyi operator sopryazheniya i deformatsii klassov”, Soobsch. AN GSSR, 135:1 (1989), 57–59 | MR | Zbl

[15] Lekishvili M. M., “O sopryazhennykh funktsiyakh mnogikh peremennykh v klasse $\operatorname{Lip}\alpha$”, Matem. zametki, 23:3 (1978), 361–372 | MR | Zbl

[16] Zhak I. E., “Ob odnoi teoreme Zigmunda o sopryazhennykh funktsiyakh”, Dokl. AN SSSR, 97:3 (1954), 387–389 | MR | Zbl

[17] Lekishvili M. M., “O sopryazhennykh funktsiyakh mnogikh peremennykh”, Soobsch. AN GSSR, 94:1 (1979), 21–23 | MR | Zbl

[18] Zigmund A., Trigonometricheskie ryady, t. 1, M., 1965

[19] Zhizhiashvili L. V., “Integriruemost i nepreryvnost sopryazhennykh funktsii mnogikh peremennykh”, Soobsch. AN GSSR, 97:1 (1980), 17–20 | MR | Zbl