Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 835-846
Voir la notice de l'article provenant de la source Math-Net.Ru
Nonhomogeneous initial boundary value problems for a specific quasilinear system of equations of composite type are studied. The system describes the one-dimensional motion of a viscous perfect polytropic gas. We assume that the initial data belong to the spaces $L_\infty(\Omega)$ or $L_2(\Omega)$ and the problems under consideration have generalized solutions only. For such solutions, a theorem on strong stability is proved, i.e., estimates for the norm of the difference of two solutions are expressed in terms of the sums of the norms of the differences of the corresponding data. Uniqueness of generalized solutions is a simple consequence of this theorem.
@article{MZM_1998_63_6_a3,
author = {A. A. Zlotnik and A. A. Amosov},
title = {Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases},
journal = {Matemati\v{c}eskie zametki},
pages = {835--846},
publisher = {mathdoc},
volume = {63},
number = {6},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a3/}
}
TY - JOUR AU - A. A. Zlotnik AU - A. A. Amosov TI - Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases JO - Matematičeskie zametki PY - 1998 SP - 835 EP - 846 VL - 63 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a3/ LA - ru ID - MZM_1998_63_6_a3 ER -
%0 Journal Article %A A. A. Zlotnik %A A. A. Amosov %T Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases %J Matematičeskie zametki %D 1998 %P 835-846 %V 63 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a3/ %G ru %F MZM_1998_63_6_a3
A. A. Zlotnik; A. A. Amosov. Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 835-846. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a3/