Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 835-846

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonhomogeneous initial boundary value problems for a specific quasilinear system of equations of composite type are studied. The system describes the one-dimensional motion of a viscous perfect polytropic gas. We assume that the initial data belong to the spaces $L_\infty(\Omega)$ or $L_2(\Omega)$ and the problems under consideration have generalized solutions only. For such solutions, a theorem on strong stability is proved, i.e., estimates for the norm of the difference of two solutions are expressed in terms of the sums of the norms of the differences of the corresponding data. Uniqueness of generalized solutions is a simple consequence of this theorem.
@article{MZM_1998_63_6_a3,
     author = {A. A. Zlotnik and A. A. Amosov},
     title = {Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases},
     journal = {Matemati\v{c}eskie zametki},
     pages = {835--846},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a3/}
}
TY  - JOUR
AU  - A. A. Zlotnik
AU  - A. A. Amosov
TI  - Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases
JO  - Matematičeskie zametki
PY  - 1998
SP  - 835
EP  - 846
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a3/
LA  - ru
ID  - MZM_1998_63_6_a3
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%A A. A. Amosov
%T Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases
%J Matematičeskie zametki
%D 1998
%P 835-846
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a3/
%G ru
%F MZM_1998_63_6_a3
A. A. Zlotnik; A. A. Amosov. Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 835-846. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a3/