On boundary properties of the components of polyharmonic functions
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 821-834

Voir la notice de l'article provenant de la source Math-Net.Ru

The following two classes of functions are introduced for $p\ge0$: the class $CU^p(G)$ of uniformly continuous functions of order $p$ in a domain $G\subset\mathbb C$, and the class $\mathfrak M^p(G)$ of functions of the boundedness of order $p$ in $G$. Criterions are established for an $n$-analytic function to belong to each of these classes.
@article{MZM_1998_63_6_a2,
     author = {E. P. Dolzhenko},
     title = {On boundary properties of the components of polyharmonic functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {821--834},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a2/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
TI  - On boundary properties of the components of polyharmonic functions
JO  - Matematičeskie zametki
PY  - 1998
SP  - 821
EP  - 834
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a2/
LA  - ru
ID  - MZM_1998_63_6_a2
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%T On boundary properties of the components of polyharmonic functions
%J Matematičeskie zametki
%D 1998
%P 821-834
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a2/
%G ru
%F MZM_1998_63_6_a2
E. P. Dolzhenko. On boundary properties of the components of polyharmonic functions. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 821-834. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a2/