Nonlinear Kolmogorov widths
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 891-902

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a generalization of width in the sense of Kolmogorov suitable for estimating best $m$-term approximations. We generalize Carl's inequality which gives lower estimate of Kolmogorov widths in terms of entropy numbers. Application of these new inequalities gives some progress in the problem of estimating best $m$-term trigonometric approximations of multivariate functions.
@article{MZM_1998_63_6_a10,
     author = {V. N. Temlyakov},
     title = {Nonlinear {Kolmogorov} widths},
     journal = {Matemati\v{c}eskie zametki},
     pages = {891--902},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a10/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Nonlinear Kolmogorov widths
JO  - Matematičeskie zametki
PY  - 1998
SP  - 891
EP  - 902
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a10/
LA  - ru
ID  - MZM_1998_63_6_a10
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Nonlinear Kolmogorov widths
%J Matematičeskie zametki
%D 1998
%P 891-902
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a10/
%G ru
%F MZM_1998_63_6_a10
V. N. Temlyakov. Nonlinear Kolmogorov widths. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 891-902. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a10/