Nonlinear Kolmogorov widths
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 891-902.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a generalization of width in the sense of Kolmogorov suitable for estimating best $m$-term approximations. We generalize Carl's inequality which gives lower estimate of Kolmogorov widths in terms of entropy numbers. Application of these new inequalities gives some progress in the problem of estimating best $m$-term trigonometric approximations of multivariate functions.
@article{MZM_1998_63_6_a10,
     author = {V. N. Temlyakov},
     title = {Nonlinear {Kolmogorov} widths},
     journal = {Matemati\v{c}eskie zametki},
     pages = {891--902},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a10/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Nonlinear Kolmogorov widths
JO  - Matematičeskie zametki
PY  - 1998
SP  - 891
EP  - 902
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a10/
LA  - ru
ID  - MZM_1998_63_6_a10
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Nonlinear Kolmogorov widths
%J Matematičeskie zametki
%D 1998
%P 891-902
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a10/
%G ru
%F MZM_1998_63_6_a10
V. N. Temlyakov. Nonlinear Kolmogorov widths. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 891-902. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a10/

[1] Lorentz G. G., “Metric entropy and approximation”, Bull. Amer. Math. Soc., 72 (1966), 903–937 | DOI | MR | Zbl

[2] Carl B., “Entropy numbers, $s$-numbers, and eigenvalue problems”, J. Funct. Anal., 41 (1981), 290–306 | DOI | MR | Zbl

[3] DeVore R. A., Temlyakov V. N., “Nonlinear approximation by trigonometric sums”, J. Fourier Anal. Appl., 2:1 (1995), 29–48 | DOI | MR | Zbl

[4] Pisier G., The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Math., 94, Cambridge, 1989 | MR | Zbl

[5] Kashin B. S., “O nekotorykh svoistvakh prostranstva trigonometricheskikh polinomov s ravnomernoi normoi”, Tr. MIAN, 145, Nauka, M., 1980, 111–116 | MR | Zbl

[6] Temlyakov V. N., “Otsenki asimptoticheskikh kharakteristik klassov funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN, 189, Nauka, M., 1989, 138–168 | MR

[7] Temlyakov V. N., “O priblizhenii periodicheskikh funktsii neskolkikh peremennykh”, Dokl. AN SSSR, 279 (1984), 301–305 | MR | Zbl

[8] Belinskii E. S., “Approximation of functions of several variables by trigonometric polynomials with given number of harmonics, and estimates of $\epsilon$-entropy”, Anal. Math., 15:2 (1989), 67–74 | DOI | MR | Zbl

[9] Kashin B. S., Temlyakov V. N., “O nailuchshikh $m$-chlennykh priblizheniyakh i entropii mnozhestv v prostranstve $L^1$”, Matem. zametki, 56:5 (1994), 57–86 | MR | Zbl

[10] Temlyakov V. N., Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Tr. MIAN, 178, Nauka, M., 1986 | MR | Zbl

[11] Kashin B. S., Temlyakov V. N., “Ob otsenke asimptoticheskikh kharakteristik klassov funktsii s ogranichennoi smeshannoi proizvodnoi”, Matem. zametki, 58:6 (1995), 922–925 | MR | Zbl

[12] Belinskii E. S., “Asimptoticheskie kharakteristiki klassov funktsii s ogranicheniyami na smeshannuyu proizvodnuyu (smeshannuyu raznost)”, Issledovaniya po teorii funktsii mnogikh deistvitelnykh peremennykh, YaGU, Yaroslavl, 1990, 22–37