Three-term recurrence relations with matrix coefficients. The completely indefinite case
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 709-716
Cet article a éte moissonné depuis la source Math-Net.Ru
In the space $\ell_p^2$ of vector sequences, we consider the symmetric operator $L$ generated by the expression $(lu)_j:=B_ju_{j+1}+A_ju_j+B_{j-1}^*u_{j-1}$, where $u_{-1}=0$, $u_0,u_1,\ldots\in\mathbb C^p$, $A_j$ and $B_j$ are $p\times p$ matrices with entries from $\mathbb C$, $A_j^*=A_j$, and the inverses $B_j^{-1}$ ($j=0,1,\dots$) exist. We state a necessary and sufficient condition for the deficiency numbers of the operator $L$ to be maximal; this corresponds to the completely indefinite case for the expression $l$. Tests for incomplete indefiniteness and complete indefiniteness for $l$ in terms of the coefficients $A_j$ and $B_j$ are derived.
@article{MZM_1998_63_5_a8,
author = {A. G. Kostyuchenko and K. A. Mirzoev},
title = {Three-term recurrence relations with matrix coefficients. {The} completely indefinite case},
journal = {Matemati\v{c}eskie zametki},
pages = {709--716},
year = {1998},
volume = {63},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a8/}
}
TY - JOUR AU - A. G. Kostyuchenko AU - K. A. Mirzoev TI - Three-term recurrence relations with matrix coefficients. The completely indefinite case JO - Matematičeskie zametki PY - 1998 SP - 709 EP - 716 VL - 63 IS - 5 UR - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a8/ LA - ru ID - MZM_1998_63_5_a8 ER -
A. G. Kostyuchenko; K. A. Mirzoev. Three-term recurrence relations with matrix coefficients. The completely indefinite case. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 709-716. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a8/
[1] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965
[2] Krein M. G., “Beskonechnye $J$ matritsy i matrichnaya problema momentov”, Dokl. AN SSSR, 69:3 (1949), 125–128 | MR | Zbl
[3] Mirzoev K. A., “Funktsiya Koshi i $L_w^p$ svoistva reshenii kvazidifferentsialnykh uravnenii”, UMN, 46:4 (280) (1991), 161–162 | MR
[4] Akhiezer N. I., Klassicheskaya problema momentov, Fizmatlit, M., 1961
[5] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969