Diffusion instability of a uniform cycle bifurcating from a separatrix loop
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 697-708

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the boundary value problem $$ \frac{\partial u}{\partial t} =D\frac{\partial^2u}{\partial x^2}+F(u,\mu), \qquad\frac{\partial u}{\partial x}\Big|_{x=0} =\frac{\partial u}{\partial x}\Big|_{x=\pi}=0. $$ Here $u\in\mathbb R^2$, $D=\operatorname{diag}\{d_1,d_2\}$, $d_1,d_2>0$, and the function $F$ is jointly smooth in $(u,\mu)$ and satisfies the following condition: for $0\mu\ll1$ the boundary value problem has a homogeneous (independent of $x$) cycle bifurcating from a loop of the separatrix of a saddle. We establish conditions for stability and instability of this cycle and give a geometric interpretation of these conditions.
@article{MZM_1998_63_5_a7,
     author = {A. Yu. Kolesov},
     title = {Diffusion instability of a uniform cycle bifurcating from a separatrix loop},
     journal = {Matemati\v{c}eskie zametki},
     pages = {697--708},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a7/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
TI  - Diffusion instability of a uniform cycle bifurcating from a separatrix loop
JO  - Matematičeskie zametki
PY  - 1998
SP  - 697
EP  - 708
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a7/
LA  - ru
ID  - MZM_1998_63_5_a7
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%T Diffusion instability of a uniform cycle bifurcating from a separatrix loop
%J Matematičeskie zametki
%D 1998
%P 697-708
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a7/
%G ru
%F MZM_1998_63_5_a7
A. Yu. Kolesov. Diffusion instability of a uniform cycle bifurcating from a separatrix loop. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 697-708. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a7/