Approximation of random fields by generalized linear splines
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 690-696

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of reconstructing stochastic processes or stochastic fields from their known values on a finite grid. This problem is stated and solved in a sufficiently general setting; it is shown that even in the simplest case of approximating a stochastic process by generalized linear splines, the tail of the distribution of the approximation error normalized in an appropriate way decreases exponentially.
@article{MZM_1998_63_5_a6,
     author = {S. A. Egishyants and E. I. Ostrovskii},
     title = {Approximation of random fields by generalized linear splines},
     journal = {Matemati\v{c}eskie zametki},
     pages = {690--696},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a6/}
}
TY  - JOUR
AU  - S. A. Egishyants
AU  - E. I. Ostrovskii
TI  - Approximation of random fields by generalized linear splines
JO  - Matematičeskie zametki
PY  - 1998
SP  - 690
EP  - 696
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a6/
LA  - ru
ID  - MZM_1998_63_5_a6
ER  - 
%0 Journal Article
%A S. A. Egishyants
%A E. I. Ostrovskii
%T Approximation of random fields by generalized linear splines
%J Matematičeskie zametki
%D 1998
%P 690-696
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a6/
%G ru
%F MZM_1998_63_5_a6
S. A. Egishyants; E. I. Ostrovskii. Approximation of random fields by generalized linear splines. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 690-696. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a6/