Sharpness of certain Campbell and Pommerenke estimates
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 665-672.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the sharpness of some well-known estimates in universal linear-invariant families $\mathscr U_\alpha$ of regular functions. It is shown that the estimate of $|\arg f'(z)|$, $z\in\Delta=\{z:|z|1\}$ obtained by Pommerenke in 1964 is sharp; the extremal function is found. A lower estimate for the Schwarzian derivative in $\mathscr U_\alpha$ is obtained. For $f\in\mathscr U_\alpha$, a sharp estimate of order of the function $f_r(z)=f(rz)/r$ with $r\in(0,1)$ is found; this estimate is applied to solve other problems.
@article{MZM_1998_63_5_a3,
     author = {J. Godula and V. V. Starkov},
     title = {Sharpness of certain {Campbell} and {Pommerenke} estimates},
     journal = {Matemati\v{c}eskie zametki},
     pages = {665--672},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a3/}
}
TY  - JOUR
AU  - J. Godula
AU  - V. V. Starkov
TI  - Sharpness of certain Campbell and Pommerenke estimates
JO  - Matematičeskie zametki
PY  - 1998
SP  - 665
EP  - 672
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a3/
LA  - ru
ID  - MZM_1998_63_5_a3
ER  - 
%0 Journal Article
%A J. Godula
%A V. V. Starkov
%T Sharpness of certain Campbell and Pommerenke estimates
%J Matematičeskie zametki
%D 1998
%P 665-672
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a3/
%G ru
%F MZM_1998_63_5_a3
J. Godula; V. V. Starkov. Sharpness of certain Campbell and Pommerenke estimates. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 665-672. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a3/

[1] Pommerenke Ch., “Linear-invariante Familien analytischer Funktionen, I”, Math. Ann., 155 (1964), 108–154 | DOI | MR | Zbl

[2] Campbell D. M., Ziegler M. R., “The argument of derivative linear-invariant families of finite order and the radius of close-to-convexity”, Ann. Univ. Mariae Curie-Skłodowska. Sect. A, 28 (1976), 5–22 | Zbl

[3] Campbell D. M., Pfaltzgraff J. A., “Boundary behaviour and linear invariant families”, J. Anal. Math., 29 (1976), 67–92 | DOI | MR | Zbl

[4] Starkov V. V., O nekotorykh podklassakh lineino-invariantnykh semeistv, imeyuschikh integralnoe predstavlenie, Dep. VINITI No 3341-81, VINITI, M., 1981

[5] Starkov V. V., “O nekotorykh lineino-invariantnykh semeistvakh funktsii, imeyuschikh integralnoe predstavlenie”, Izv. vuzov. Matem., 1983, no. 5, 82–85 | MR | Zbl

[6] Starkov V. V., “K otsenke koeffitsientov v klasse $U'_\alpha$ lokalno odnolistnykh funktsii”, Vestn. LGU. Matem., mekh., astron., 1984, no. 13, 48–54 | MR | Zbl

[7] Campbell D. M., Cima J. A., Pfaltzgraff J. A., “Linear space and linear-invariant families of locally univalent analytic functions”, Manuscripta Math., 4 (1971), 1–30 | DOI | MR | Zbl

[8] Starkov V. V., “Ob odnom neravenstve dlya koeffitsientov funktsii nekotorogo lineino-invariantnogo semeistva”, C. R. Acad. Bulgare Sci., 37:8 (1984), 999–1002 | MR | Zbl

[9] Godula J., Starkov V. V., “On the Jakubowski's functional in a linearly invariant family”, Zeszyty Nauk. Politech. Rzeszowskiej. Mat. Fiz., 73 (1990), 19–27 | MR | Zbl

[10] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966

[11] Starkov V. V., K probleme koeffitsientov v $U'_\alpha$, Dep. VINITI No 972-82, VINITI, M., 1981

[12] Campbell D. M., “Locally univalent functions with locally univalent derivatives”, Trans. Amer. Math. Soc., 162 (1971), 395–409 | DOI | MR

[13] Shah S. M., Trimble S. Y., “Univalent functions with univalent derivatives, III”, J. Appl. Math. Mech., 19 (1969/1970), 451–460 | MR | Zbl