Sharpness of certain Campbell and Pommerenke estimates
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 665-672

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the sharpness of some well-known estimates in universal linear-invariant families $\mathscr U_\alpha$ of regular functions. It is shown that the estimate of $|\arg f'(z)|$, $z\in\Delta=\{z:|z|1\}$ obtained by Pommerenke in 1964 is sharp; the extremal function is found. A lower estimate for the Schwarzian derivative in $\mathscr U_\alpha$ is obtained. For $f\in\mathscr U_\alpha$, a sharp estimate of order of the function $f_r(z)=f(rz)/r$ with $r\in(0,1)$ is found; this estimate is applied to solve other problems.
@article{MZM_1998_63_5_a3,
     author = {J. Godula and V. V. Starkov},
     title = {Sharpness of certain {Campbell} and {Pommerenke} estimates},
     journal = {Matemati\v{c}eskie zametki},
     pages = {665--672},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a3/}
}
TY  - JOUR
AU  - J. Godula
AU  - V. V. Starkov
TI  - Sharpness of certain Campbell and Pommerenke estimates
JO  - Matematičeskie zametki
PY  - 1998
SP  - 665
EP  - 672
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a3/
LA  - ru
ID  - MZM_1998_63_5_a3
ER  - 
%0 Journal Article
%A J. Godula
%A V. V. Starkov
%T Sharpness of certain Campbell and Pommerenke estimates
%J Matematičeskie zametki
%D 1998
%P 665-672
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a3/
%G ru
%F MZM_1998_63_5_a3
J. Godula; V. V. Starkov. Sharpness of certain Campbell and Pommerenke estimates. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 665-672. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a3/