Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_63_5_a20, author = {I. A. Sheipak}, title = {Nontrivial fractals in the plane and linear operators with joint spectral radius equal to 1}, journal = {Matemati\v{c}eskie zametki}, pages = {797--800}, publisher = {mathdoc}, volume = {63}, number = {5}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a20/} }
TY - JOUR AU - I. A. Sheipak TI - Nontrivial fractals in the plane and linear operators with joint spectral radius equal to 1 JO - Matematičeskie zametki PY - 1998 SP - 797 EP - 800 VL - 63 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a20/ LA - ru ID - MZM_1998_63_5_a20 ER -
I. A. Sheipak. Nontrivial fractals in the plane and linear operators with joint spectral radius equal to 1. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 797-800. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a20/
[1] Mandelbrot B., Fractals, Form, Chance, and Dimension, Freeman, San Francisco, 1977 | Zbl
[2] Protasov V. Yu., Fundament. i prikl. matem., 2:1 (1996), 205–231 | MR | Zbl
[3] Rota G. C., Strang G., Indag. Math., 63 (1960), 379–381 | MR | Zbl
[4] Hutchinson J. E., Indiana Univ. Math. J., 30 (1981), 713–747 | DOI | MR | Zbl
[5] Barnsley M. F., Demko S., Proc. Roy. Soc. London. Ser. A, 399 (1985), 243–275 | DOI | MR | Zbl
[6] Barnsley M. F., Sloan A. D., Byte Mag., 1988, 215–223
[7] Barnsley M. F., Fractals Everywhere, Acad. Press, London, 1988 | Zbl