Nontrivial fractals in the plane and linear operators with joint spectral radius equal to 1
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 797-800.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1998_63_5_a20,
     author = {I. A. Sheipak},
     title = {Nontrivial fractals in the plane and linear operators with joint spectral radius equal to 1},
     journal = {Matemati\v{c}eskie zametki},
     pages = {797--800},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a20/}
}
TY  - JOUR
AU  - I. A. Sheipak
TI  - Nontrivial fractals in the plane and linear operators with joint spectral radius equal to 1
JO  - Matematičeskie zametki
PY  - 1998
SP  - 797
EP  - 800
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a20/
LA  - ru
ID  - MZM_1998_63_5_a20
ER  - 
%0 Journal Article
%A I. A. Sheipak
%T Nontrivial fractals in the plane and linear operators with joint spectral radius equal to 1
%J Matematičeskie zametki
%D 1998
%P 797-800
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a20/
%G ru
%F MZM_1998_63_5_a20
I. A. Sheipak. Nontrivial fractals in the plane and linear operators with joint spectral radius equal to 1. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 797-800. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a20/

[1] Mandelbrot B., Fractals, Form, Chance, and Dimension, Freeman, San Francisco, 1977 | Zbl

[2] Protasov V. Yu., Fundament. i prikl. matem., 2:1 (1996), 205–231 | MR | Zbl

[3] Rota G. C., Strang G., Indag. Math., 63 (1960), 379–381 | MR | Zbl

[4] Hutchinson J. E., Indiana Univ. Math. J., 30 (1981), 713–747 | DOI | MR | Zbl

[5] Barnsley M. F., Demko S., Proc. Roy. Soc. London. Ser. A, 399 (1985), 243–275 | DOI | MR | Zbl

[6] Barnsley M. F., Sloan A. D., Byte Mag., 1988, 215–223

[7] Barnsley M. F., Fractals Everywhere, Acad. Press, London, 1988 | Zbl