Isospectrality and Galois projective geometries
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 660-664.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a series of pairs of domains in the plane and pairs of surfaces with boundary that are isospectral but not isometric. The construction is based on the existence of finite transformation groups that are spectrally equivalent but not isomorphic.
@article{MZM_1998_63_5_a2,
     author = {Ya. B. Vorobets and A. M. Stepin},
     title = {Isospectrality and {Galois} projective geometries},
     journal = {Matemati\v{c}eskie zametki},
     pages = {660--664},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a2/}
}
TY  - JOUR
AU  - Ya. B. Vorobets
AU  - A. M. Stepin
TI  - Isospectrality and Galois projective geometries
JO  - Matematičeskie zametki
PY  - 1998
SP  - 660
EP  - 664
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a2/
LA  - ru
ID  - MZM_1998_63_5_a2
ER  - 
%0 Journal Article
%A Ya. B. Vorobets
%A A. M. Stepin
%T Isospectrality and Galois projective geometries
%J Matematičeskie zametki
%D 1998
%P 660-664
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a2/
%G ru
%F MZM_1998_63_5_a2
Ya. B. Vorobets; A. M. Stepin. Isospectrality and Galois projective geometries. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 660-664. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a2/

[1] Gordon C., Webb D., Wolpert S., “Isospectral plane domains and surfaces via Riemannian orbifolds”, Invent. Math., 110:1 (1992), 1–22 | DOI | MR | Zbl

[2] Sunada T., “Riemannian coverings and isospectral manifolds”, Ann. of Math. (2), 121 (1985), 169–186 | DOI | MR | Zbl

[3] Berard P., “Transplantation et isospéctralité, I”, Math. Ann., 292:3 (1992), 547–560 | DOI | MR | Zbl

[4] Gordon C. S., Webb D. L., “Isospectral convex domains in the hyperbolic plane”, Proc. Amer. Math. Soc., 120:3 (1994), 981–983 | DOI | MR | Zbl