Recurrence of the integral of a smooth conditionally periodic function
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 737-748

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the integral of a smooth multifrequency conditionally periodic function with zero mean oscillates.
@article{MZM_1998_63_5_a12,
     author = {N. G. Moshchevitin},
     title = {Recurrence of the integral of a smooth conditionally periodic function},
     journal = {Matemati\v{c}eskie zametki},
     pages = {737--748},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a12/}
}
TY  - JOUR
AU  - N. G. Moshchevitin
TI  - Recurrence of the integral of a smooth conditionally periodic function
JO  - Matematičeskie zametki
PY  - 1998
SP  - 737
EP  - 748
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a12/
LA  - ru
ID  - MZM_1998_63_5_a12
ER  - 
%0 Journal Article
%A N. G. Moshchevitin
%T Recurrence of the integral of a smooth conditionally periodic function
%J Matematičeskie zametki
%D 1998
%P 737-748
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a12/
%G ru
%F MZM_1998_63_5_a12
N. G. Moshchevitin. Recurrence of the integral of a smooth conditionally periodic function. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 737-748. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a12/