On the $\varphi$-structure on the projective group $L_2(q)$
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 725-728
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper it is proved that the projective group $L_2(q)$ cannot be the automorphism group of a finite left distributive quasigroup. This is a special case of the conjecture according to which the automorphism group of a left distributive quasigroup is solvable.
@article{MZM_1998_63_5_a10,
author = {S. V. Leshcheva and O. V. Suvorova},
title = {On the $\varphi$-structure on the projective group $L_2(q)$},
journal = {Matemati\v{c}eskie zametki},
pages = {725--728},
year = {1998},
volume = {63},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a10/}
}
S. V. Leshcheva; O. V. Suvorova. On the $\varphi$-structure on the projective group $L_2(q)$. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 725-728. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a10/
[1] Galkin V. M., “Levodistributivnye kvazigruppy konechnogo poryadka”, Kvazigruppy i lupy, Kishinev, 1973
[2] Busarkin V. M., Gorchakov Yu. M., Konechnye rasscheplyaemye gruppy, Nauka, M., 1968
[3] Seminar po algebraicheskim gruppam, Mir, M., 1973
[4] Dedonne Zh., Geometriya klassicheskikh grupp, Mir, M., 1974
[5] Steinberg R., Lektsii po gruppam Shevalle, Mir, M., 1975 | Zbl