On the $\varphi$-structure on the projective group $L_2(q)$
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 725-728.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper it is proved that the projective group $L_2(q)$ cannot be the automorphism group of a finite left distributive quasigroup. This is a special case of the conjecture according to which the automorphism group of a left distributive quasigroup is solvable.
@article{MZM_1998_63_5_a10,
     author = {S. V. Leshcheva and O. V. Suvorova},
     title = {On the $\varphi$-structure on the projective group $L_2(q)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {725--728},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a10/}
}
TY  - JOUR
AU  - S. V. Leshcheva
AU  - O. V. Suvorova
TI  - On the $\varphi$-structure on the projective group $L_2(q)$
JO  - Matematičeskie zametki
PY  - 1998
SP  - 725
EP  - 728
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a10/
LA  - ru
ID  - MZM_1998_63_5_a10
ER  - 
%0 Journal Article
%A S. V. Leshcheva
%A O. V. Suvorova
%T On the $\varphi$-structure on the projective group $L_2(q)$
%J Matematičeskie zametki
%D 1998
%P 725-728
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a10/
%G ru
%F MZM_1998_63_5_a10
S. V. Leshcheva; O. V. Suvorova. On the $\varphi$-structure on the projective group $L_2(q)$. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 725-728. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a10/

[1] Galkin V. M., “Levodistributivnye kvazigruppy konechnogo poryadka”, Kvazigruppy i lupy, Kishinev, 1973

[2] Busarkin V. M., Gorchakov Yu. M., Konechnye rasscheplyaemye gruppy, Nauka, M., 1968

[3] Seminar po algebraicheskim gruppam, Mir, M., 1973

[4] Dedonne Zh., Geometriya klassicheskikh grupp, Mir, M., 1974

[5] Steinberg R., Lektsii po gruppam Shevalle, Mir, M., 1975 | Zbl