Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_63_5_a1, author = {D. V. Bolotov}, title = {Hyperfoliations on compact 3-manifolds with restrictions on the external curvature of leaves}, journal = {Matemati\v{c}eskie zametki}, pages = {651--659}, publisher = {mathdoc}, volume = {63}, number = {5}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a1/} }
TY - JOUR AU - D. V. Bolotov TI - Hyperfoliations on compact 3-manifolds with restrictions on the external curvature of leaves JO - Matematičeskie zametki PY - 1998 SP - 651 EP - 659 VL - 63 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a1/ LA - ru ID - MZM_1998_63_5_a1 ER -
D. V. Bolotov. Hyperfoliations on compact 3-manifolds with restrictions on the external curvature of leaves. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 651-659. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a1/
[1] Asimov D., “Average Gaussian curvature of leaves of foliations”, Bull. Amer. Math. Soc., 84 (1978), 131–133 | DOI | MR | Zbl
[2] Brito F., Langevin R., Rosenberg H., “Intégrales de courbure sur des variétés feuilletées”, J. Differential Geom., 16 (1981), 123–135
[3] Tondeur Ph., Foliations on Riemannian Manifolds, Universitext, Springer, New York, 1988
[4] Rosenberg R., “Foliations by planes”, Topology, 7 (1968), 131–138 | DOI | MR | Zbl
[5] Cheeger J., Gromoll D., “On the structure of complete manifolds of nonnegative curvature”, Ann. of Math., 96 (1972), 413–443 | DOI | MR | Zbl
[6] Borisenko A. A., “O tsilindricheskikh mnogomernykh poverkhnostyakh v prostranstve Lobachevskogo”, Ukr. geom. sb., 33 (1990), 18–27
[7] Aminov Yu. A., Geometriya vektornogo polya, Nauka, M., 1990
[8] Maltz R., “The nullity spaces of the curvature operator”, Cahiers Topologie Géom. Différentielle Catégoriques, 8 (1968), 1–20
[9] Eberlein P., “Euclidean de Ram factor of a lattice of nonpositive curvature”, J. Differential Geom., 18 (1983), 209–220 | MR | Zbl
[10] Johnson D., Witt L., “Totally geodesic foliations”, J. Differential Geom., 15 (1980), 225–235 | MR | Zbl