Hyperfoliations on compact 3-manifolds with restrictions on the external curvature of leaves
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 651-659.

Voir la notice de l'article provenant de la source Math-Net.Ru

$C^\infty$-foliations of codimension 1 on compact Riemannian 3-manifolds are studied. New classes of foliations, namely hyperbolic, elliptic, and parabolic foliations, are considered. Examples of such foliations are presented. In particular, a $C^\infty$-metric of nonnegative sectional curvature on $S^3$ such that the Reeb foliation is parabolic with respect to this metric is constructed. Analytic 3-manifolds with sectional curvature of constant sign admitting parabolic foliations are classified.
@article{MZM_1998_63_5_a1,
     author = {D. V. Bolotov},
     title = {Hyperfoliations on compact 3-manifolds with restrictions on the external curvature of leaves},
     journal = {Matemati\v{c}eskie zametki},
     pages = {651--659},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a1/}
}
TY  - JOUR
AU  - D. V. Bolotov
TI  - Hyperfoliations on compact 3-manifolds with restrictions on the external curvature of leaves
JO  - Matematičeskie zametki
PY  - 1998
SP  - 651
EP  - 659
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a1/
LA  - ru
ID  - MZM_1998_63_5_a1
ER  - 
%0 Journal Article
%A D. V. Bolotov
%T Hyperfoliations on compact 3-manifolds with restrictions on the external curvature of leaves
%J Matematičeskie zametki
%D 1998
%P 651-659
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a1/
%G ru
%F MZM_1998_63_5_a1
D. V. Bolotov. Hyperfoliations on compact 3-manifolds with restrictions on the external curvature of leaves. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 651-659. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a1/

[1] Asimov D., “Average Gaussian curvature of leaves of foliations”, Bull. Amer. Math. Soc., 84 (1978), 131–133 | DOI | MR | Zbl

[2] Brito F., Langevin R., Rosenberg H., “Intégrales de courbure sur des variétés feuilletées”, J. Differential Geom., 16 (1981), 123–135

[3] Tondeur Ph., Foliations on Riemannian Manifolds, Universitext, Springer, New York, 1988

[4] Rosenberg R., “Foliations by planes”, Topology, 7 (1968), 131–138 | DOI | MR | Zbl

[5] Cheeger J., Gromoll D., “On the structure of complete manifolds of nonnegative curvature”, Ann. of Math., 96 (1972), 413–443 | DOI | MR | Zbl

[6] Borisenko A. A., “O tsilindricheskikh mnogomernykh poverkhnostyakh v prostranstve Lobachevskogo”, Ukr. geom. sb., 33 (1990), 18–27

[7] Aminov Yu. A., Geometriya vektornogo polya, Nauka, M., 1990

[8] Maltz R., “The nullity spaces of the curvature operator”, Cahiers Topologie Géom. Différentielle Catégoriques, 8 (1968), 1–20

[9] Eberlein P., “Euclidean de Ram factor of a lattice of nonpositive curvature”, J. Differential Geom., 18 (1983), 209–220 | MR | Zbl

[10] Johnson D., Witt L., “Totally geodesic foliations”, J. Differential Geom., 15 (1980), 225–235 | MR | Zbl