Hyperfoliations on compact 3-manifolds with restrictions on the external curvature of leaves
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 651-659
Voir la notice de l'article provenant de la source Math-Net.Ru
$C^\infty$-foliations of codimension 1 on compact Riemannian 3-manifolds are studied. New classes of foliations, namely hyperbolic, elliptic, and parabolic foliations, are considered. Examples of such foliations are presented. In particular, a $C^\infty$-metric of nonnegative sectional curvature on $S^3$ such that the Reeb foliation is parabolic with respect to this metric is constructed. Analytic 3-manifolds with sectional curvature of constant sign admitting parabolic foliations are classified.
@article{MZM_1998_63_5_a1,
author = {D. V. Bolotov},
title = {Hyperfoliations on compact 3-manifolds with restrictions on the external curvature of leaves},
journal = {Matemati\v{c}eskie zametki},
pages = {651--659},
publisher = {mathdoc},
volume = {63},
number = {5},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a1/}
}
TY - JOUR AU - D. V. Bolotov TI - Hyperfoliations on compact 3-manifolds with restrictions on the external curvature of leaves JO - Matematičeskie zametki PY - 1998 SP - 651 EP - 659 VL - 63 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a1/ LA - ru ID - MZM_1998_63_5_a1 ER -
D. V. Bolotov. Hyperfoliations on compact 3-manifolds with restrictions on the external curvature of leaves. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 651-659. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a1/