Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry
Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 572-578.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability criteria of boundary equilibria for dynamical systems in the three critical cases, $(n,k)=(3,0), (2,1)$, and $(1,1)$, are obtained.
@article{MZM_1998_63_4_a9,
     author = {L. G. Kurakin},
     title = {Critical cases of stability. {Converse} implicit function theorem for dynamical systems with cosymmetry},
     journal = {Matemati\v{c}eskie zametki},
     pages = {572--578},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a9/}
}
TY  - JOUR
AU  - L. G. Kurakin
TI  - Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry
JO  - Matematičeskie zametki
PY  - 1998
SP  - 572
EP  - 578
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a9/
LA  - ru
ID  - MZM_1998_63_4_a9
ER  - 
%0 Journal Article
%A L. G. Kurakin
%T Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry
%J Matematičeskie zametki
%D 1998
%P 572-578
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a9/
%G ru
%F MZM_1998_63_4_a9
L. G. Kurakin. Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry. Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 572-578. http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a9/

[1] Yudovich V. I., “Kosimmetriya, vyrozhdenie reshenii operatornykh uravnenii, vozniknovenie filtratsionnoi konvektsii”, Matem. zametki, 49:5 (1991), 142–148 | MR | Zbl

[2] Yudovich V. I., Kosimmetriya i differentsialnye uravneniya vtorogo poryadka, Dep. VINITI, No 1008–V93, VINITI, M., 1993

[3] Yudovich V. I., “Secondary cycle of equilibria in a system with cosymmetry, its creation by bifurcation and impossibility of symmetric treatment of it”, Chaos, 2:5 (1995), 402–411 | DOI | MR | Zbl

[4] Yudovich V. I., “Teorema o neyavnoi funktsii dlya kosimmetricheskikh uravnenii”, Matem. zametki, 60:2 (1996), 313–317 | MR | Zbl

[5] Yudovich V. I., “The cosymmetric version of the implicit function theorem”, Seminar “Linear Topological Spaces and Complex Analysis”, V. II, ed. A. Aytuna, Middle East Technical Univ., Ankara, 1995, 105–125 | MR | Zbl

[6] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M., 1950

[7] Lyapunov A. M., “Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya”, Sobr. sochinenii, T. 2, AN SSSR, M., 1956, 272–331

[8] Khazin L. G., Usloviya ustoichivosti ravnovesiya pri dvukh parakh chisto mnimykh i odnom nulevom korne, Preprint No 50, IPM AN SSSR, M., 1986

[9] Pliss V. A., “Printsip svedeniya v teorii ustoichivosti dvizheniya”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1297–1324 | MR | Zbl

[10] Khazin L. G., Shnol E. E., Ustoichivost kriticheskikh polozhenii ravnovesiya, ONTI NTsBI AN SSSR, Puschino, 1985

[11] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978

[12] Shnol E. E., Khazin L. G., Ob ustoichivosti statsionarnykh reshenii obschikh sistem differentsialnykh uravnenii vblizi kriticheskikh sluchaev, Preprint No 91, IPM AN SSSR, M., 1979

[13] Rumyantsev V. V., “Ob ustoichivosti dvizheniya po otnosheniyu k chasti peremennykh”, Vestn. MGU. Ser. 1. Matem., mekh., 1957, no. 4, 9–16

[14] Kamenkov G. V., Izbrannye trudy. T. 2. Ustoichivost i kolebaniya nelineinykh sistem, Nauka, M., 1972

[15] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966

[16] Khazin L. G., Ob ustoichivosti polozhenii ravnovesiya v nekotorykh kriticheskikh sluchayakh, Preprint No 10, IPM AN SSSR, M., 1979