Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry
Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 572-578

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability criteria of boundary equilibria for dynamical systems in the three critical cases, $(n,k)=(3,0), (2,1)$, and $(1,1)$, are obtained.
@article{MZM_1998_63_4_a9,
     author = {L. G. Kurakin},
     title = {Critical cases of stability. {Converse} implicit function theorem for dynamical systems with cosymmetry},
     journal = {Matemati\v{c}eskie zametki},
     pages = {572--578},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a9/}
}
TY  - JOUR
AU  - L. G. Kurakin
TI  - Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry
JO  - Matematičeskie zametki
PY  - 1998
SP  - 572
EP  - 578
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a9/
LA  - ru
ID  - MZM_1998_63_4_a9
ER  - 
%0 Journal Article
%A L. G. Kurakin
%T Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry
%J Matematičeskie zametki
%D 1998
%P 572-578
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a9/
%G ru
%F MZM_1998_63_4_a9
L. G. Kurakin. Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry. Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 572-578. http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a9/