Asymptotic error estimates for the method of simple iteration and for the modified and generalized Newton methods
Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 562-571.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find asymptotic error estimates for the method of simple iteration and for the modified and generalized Newton methods. The results, in contrast with the classical ones, provide explicit error estimates for these iterative processes in terms of their parameters, and this plays a decisive role not only for the proof of the convergence of combined methods, but also for determining the order of convergence. Moreover, in practice this allows us to theoretically evaluate the number of iterations sufficient for constructing the combined method of maximal order, and therefore to find the optimal number of iterations.
@article{MZM_1998_63_4_a8,
     author = {G. Yu. Kulikov},
     title = {Asymptotic error estimates for the method of simple iteration and for the modified and generalized {Newton} methods},
     journal = {Matemati\v{c}eskie zametki},
     pages = {562--571},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a8/}
}
TY  - JOUR
AU  - G. Yu. Kulikov
TI  - Asymptotic error estimates for the method of simple iteration and for the modified and generalized Newton methods
JO  - Matematičeskie zametki
PY  - 1998
SP  - 562
EP  - 571
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a8/
LA  - ru
ID  - MZM_1998_63_4_a8
ER  - 
%0 Journal Article
%A G. Yu. Kulikov
%T Asymptotic error estimates for the method of simple iteration and for the modified and generalized Newton methods
%J Matematičeskie zametki
%D 1998
%P 562-571
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a8/
%G ru
%F MZM_1998_63_4_a8
G. Yu. Kulikov. Asymptotic error estimates for the method of simple iteration and for the modified and generalized Newton methods. Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 562-571. http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a8/

[1] Hairer E., Wanner G., Solving Ordinary Differential Equations. Part II. Stiff and Differential-Algebraic Problems, Springer Ser. Comput. Math., 14, Springer, Berlin, 1991 | MR | Zbl

[2] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975

[3] Kulikov G. Yu., “Ob odnom sposobe chislennogo resheniya avtonomnoi zadachi Koshi s algebraicheskoi svyazyu na fazovye peremennye”, Vestn. MGU. Ser. 1. Matem., mekh., 1992, no. 1, 14–19 | MR

[4] Kulikov G. Yu., “O chislennom reshenii avtonomnoi zadachi Koshi s algebraicheskoi svyazyu na fazovye peremennye (nevyrozhdennyi sluchai)”, Vestn. MGU. Ser. 1. Matem., mekh., 1993, no. 3, 10–14 | MR

[5] Kulikov G. Yu., Chislennoe reshenie zadachi Koshi s algebraicheskoi svyazyu na fazovye peremennye (s prilozheniyami v meditsinskoi kibernetike), Diss. ... k. f.-m. n., VTs RAN, M., 1994

[6] Kulikov G. Yu., “O chislennom reshenii avtonomnoi zadachi Koshi s algebraicheskoi svyazyu na fazovye peremennye”, ZhVMiMF, 33:4 (1993), 522–540 | MR | Zbl

[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | Zbl

[8] Kulikov G. Yu., “Prakticheskaya realizatsiya i effektivnost chislennykh metodov resheniya zadachi Koshi s algebraicheskoi svyazyu”, ZhVMiMF, 34:11 (1994), 1617–1631 | MR | Zbl

[9] Kulikov G. Yu., “Teoremy skhodimosti dlya iterativnykh metodov Runge–Kutta s postoyannym shagom integrirovaniya”, ZhVMiMF, 36:8 (1996), 73–89 | MR | Zbl

[10] Kulikov G. Yu., Thomsen P. G., Convergence and implementation of implicit Runge–Kutta methods for DAEs, Technical Report No. 7/1996, IMM, Technical Univ. of Denmark, Lyngby, 1996