Nijenhuis tensors and obstructions to constructing pseudoholomorphic mappings
Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 541-561.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest several approaches to the classification of almost complex structures and to the construction of local or formal pseudoholomorphic mappings of one almost complex manifold into another. Appropriate criteria are given in terms of Nijenhuis tensors and their generalizations.
@article{MZM_1998_63_4_a7,
     author = {B. S. Kruglikov},
     title = {Nijenhuis tensors and obstructions to constructing pseudoholomorphic mappings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {541--561},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a7/}
}
TY  - JOUR
AU  - B. S. Kruglikov
TI  - Nijenhuis tensors and obstructions to constructing pseudoholomorphic mappings
JO  - Matematičeskie zametki
PY  - 1998
SP  - 541
EP  - 561
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a7/
LA  - ru
ID  - MZM_1998_63_4_a7
ER  - 
%0 Journal Article
%A B. S. Kruglikov
%T Nijenhuis tensors and obstructions to constructing pseudoholomorphic mappings
%J Matematičeskie zametki
%D 1998
%P 541-561
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a7/
%G ru
%F MZM_1998_63_4_a7
B. S. Kruglikov. Nijenhuis tensors and obstructions to constructing pseudoholomorphic mappings. Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 541-561. http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a7/

[1] Nijenhuis A., Woolf W. B., “Some integration problems in almost-complex and complex manifolds”, Ann. of Math. (2), 77 (1963), 424–489 | DOI | MR | Zbl

[2] Gromov M., “Pseudo holomorphic curves in symplectic manifolds”, Invent. Math., 82 (1985), 307–347 | DOI | MR | Zbl

[3] McDuff D., Salamon D., $J$-Holomorphic Curves and Quantum Cohomology, Univ. Lecture Ser, 6, Amer. Math. Soc., Providence (R.I.), 1994 ; Ньюландер А., Ниренберг Л., “Комплексные аналитические координаты на почти комплексных многообразиях”, Математика, 3:6 (1959), 131–144 | MR | Zbl

[4] Kuranishi M., “New proof for the existence of locally complete families of complex structures”, Proc. Conf. on Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, 142–154 | MR

[5] Alekseev D. V., Vinogradov A. M., Lychagin V. V., Osnovnye idei i ponyatiya differentsialnoi geometrii, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 28, VINITI, M., 1988

[6] Vinogradov A. M., Krasilschik I. S., Lychagin V. V., Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986

[7] Kumpera A., Spencer D., Lie Equations. Part I. General Theory, Ann. of Math. Stud., 73, Princeton Univ. Press, Univ. of Tokyo Press, Princeton (N.J.), 1972 | MR | Zbl

[8] Pale R., Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970

[9] Gauduchon P., “The canonical almost complex structure on the manifold of 1-jets of pseudo-holomorphic mappings between two almost complex manifolds”, Appendix to Ch. II: M. Audin, J. Lafontaine (eds.), Holomorphic Curves in Symplectic Geometry, Progr. Math., 117, Birkhäuser, Boston (M.A.), 1994, 69–73

[10] Likhnerovich A., Teoriya svyaznostei v tselom i gruppy golonomii, IL, M., 1960

[11] Frölicher A., Nijenhuis A., “Theory of vector-valued differential forms. I: Derivations in the graded ring of differential forms”, Proc. Konink. Nederl. Akad. Wetensch. Ser. A, 59 (1956), 338–359 | Zbl

[12] Tanaka N., “On differential systems, graded Lie algebras and pseudo-groups”, J. Math. Kyoto Univ., 10 (1970), 1–82 | MR | Zbl

[13] Yamaguchi K., “Differential systems associated with simple graded Lie algebras”, Progress in Differential Geometry, Adv. Stud. Pure Math., 22, Kinokuniya, Tokyo, 1993, 413–494 | Zbl