Extensions of Laguerre operators in indefinite inner product spaces
Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 509-521

Voir la notice de l'article provenant de la source Math-Net.Ru

The Laguerre–Sonin polynomials $L_n^{(\alpha)}$ are orthogonal in linear spaces with indefinite inner product if $\alpha-1$. We construct the completion $\Pi(\alpha)$ of this space and describe self-adjoint extensions of the Laguerre operator $l(y)=xy''+(1+\alpha-x)y'$, $\alpha-1$, in the space $\Pi(\alpha)$. In particular, we write out the self-adjoint extension of the Laguerre operator whose eigenfunctions coincide with the Laguerre–Sonin polynomials and form an orthogonal basis in $\Pi(\alpha)$.
@article{MZM_1998_63_4_a3,
     author = {V. A. Derkach},
     title = {Extensions of {Laguerre} operators in indefinite inner product spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {509--521},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a3/}
}
TY  - JOUR
AU  - V. A. Derkach
TI  - Extensions of Laguerre operators in indefinite inner product spaces
JO  - Matematičeskie zametki
PY  - 1998
SP  - 509
EP  - 521
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a3/
LA  - ru
ID  - MZM_1998_63_4_a3
ER  - 
%0 Journal Article
%A V. A. Derkach
%T Extensions of Laguerre operators in indefinite inner product spaces
%J Matematičeskie zametki
%D 1998
%P 509-521
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a3/
%G ru
%F MZM_1998_63_4_a3
V. A. Derkach. Extensions of Laguerre operators in indefinite inner product spaces. Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 509-521. http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a3/