Extensions of Laguerre operators in indefinite inner product spaces
Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 509-521.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Laguerre–Sonin polynomials $L_n^{(\alpha)}$ are orthogonal in linear spaces with indefinite inner product if $\alpha-1$. We construct the completion $\Pi(\alpha)$ of this space and describe self-adjoint extensions of the Laguerre operator $l(y)=xy''+(1+\alpha-x)y'$, $\alpha-1$, in the space $\Pi(\alpha)$. In particular, we write out the self-adjoint extension of the Laguerre operator whose eigenfunctions coincide with the Laguerre–Sonin polynomials and form an orthogonal basis in $\Pi(\alpha)$.
@article{MZM_1998_63_4_a3,
     author = {V. A. Derkach},
     title = {Extensions of {Laguerre} operators in indefinite inner product spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {509--521},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a3/}
}
TY  - JOUR
AU  - V. A. Derkach
TI  - Extensions of Laguerre operators in indefinite inner product spaces
JO  - Matematičeskie zametki
PY  - 1998
SP  - 509
EP  - 521
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a3/
LA  - ru
ID  - MZM_1998_63_4_a3
ER  - 
%0 Journal Article
%A V. A. Derkach
%T Extensions of Laguerre operators in indefinite inner product spaces
%J Matematičeskie zametki
%D 1998
%P 509-521
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a3/
%G ru
%F MZM_1998_63_4_a3
V. A. Derkach. Extensions of Laguerre operators in indefinite inner product spaces. Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 509-521. http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a3/

[1] Morton R. D., Krall A. M., “Distributional weight functions for orthogonal polynomials”, SIAM J. Math. Anal., 2 (1978), 604–626 | DOI | MR | Zbl

[2] Krall A. M., “Laguerre polynomial expansions in indefinite inner product spaces”, J. Math. Anal. Appl., 70 (1979), 267–279 | DOI | MR | Zbl

[3] Krall A. M., “On boundary values for the Laguerre operator in indefinite inner product spaces”, J. Math. Anal. Appl., 85 (1982), 406–408 | DOI | MR | Zbl

[4] Mingarelli A. B., Krall A. M., “Jacobi-type polynomials under an indefinite inner product”, Proc. Roy. Soc. Edinburgh. Sect. A, 90 (1981), 147–153 | MR | Zbl

[5] Berezin F. A., “O modeli Li”, Matem. sb., 60(120):4 (1963), 425–446 | MR

[6] Shondin Yu. G., “Obobschennye tochechnye vzaimodeistviya v $\mathbb R^3$ i svyazannye s nimi modeli”, TMF, 65:1 (1985), 24–34 | MR

[7] Jonas P., Langer H., Textorius B., “Models and unitary equivalence of cyclic selfadjoint operators in Pontrjagin spaces”, Oper. Theory Adv. Appl., 59 (1992), 252–284 | MR | Zbl

[8] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986

[9] Dijksma A., de Snoo H. S. V., “Symmetric and selfadjoint relations in Krein spaces, I”, Oper. Theory Adv. Appl., 24 (1987), 145–166 | MR | Zbl

[10] Malamud M. M., “Ob odnoi formule dlya obobschennykh rezolvent neplotno zadannogo ermitova operatora”, Ukr. matem. zh., 44:12 (1992), 1658–1688 | MR | Zbl

[11] Derkach V. A., “O rasshireniyakh neplotno zadannogo ermitova operatora v prostranstve Kreina”, Dokl. AN USSR. Ser. A, 1990, no. 10, 15–19 | MR | Zbl

[12] Derkach V. A., Malamud M. M., “The extension theory of Hermitian operators and the moment problem”, J. Math. Sci., 73:2 (1995), 141–242 | DOI | MR | Zbl

[13] Gorbachuk V. I., Gorbachuk M. L., Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | Zbl

[14] Krein M. G., Langer G. K., “O defektnykh podprostranstvakh i obobschennykh rezolventakh ermitova operatora v prostranstve $\Pi_\kappa$”, Funktsion. analiz i ego prilozh., 5:2 (1971), 59–71 | MR | Zbl

[15] Abramowitz M., Stegun I., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Department of Commerce, Washington, 1964 | Zbl

[16] Uitteker E. T., Vatson G. N., Kurs sovremennogo analiza, T. 2, Fizmatgiz, M., 1963

[17] Krein M. G., Langer G. K., “O spektralnoi funktsii samosopryazhennogo operatora v prostranstve s indefinitnoi metrikoi”, Dokl. AN SSSR, 152:1 (1963), 39–42 | MR | Zbl

[18] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1976

[19] Derkach V., “On Weyl function and generalized resolvents of a Hermitian operator in a Krein space”, Integral Equations Operator Theory, 23 (1995), 387–415 | DOI | MR | Zbl