Holomorphic functions and embedded real surfaces
Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 599-606.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of necessary and sufficient topological conditions for an embedded real surface to lie in a strictly pseudoconvex domain on a complex surface. These results are used to construct Stein domains on algebraic manifolds and to describe envelopes of holomorphy of real surfaces in $\mathbb{CP}^2$ and in some other complex surfaces.
@article{MZM_1998_63_4_a12,
     author = {S. Yu. Nemirovski},
     title = {Holomorphic functions and embedded real surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {599--606},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a12/}
}
TY  - JOUR
AU  - S. Yu. Nemirovski
TI  - Holomorphic functions and embedded real surfaces
JO  - Matematičeskie zametki
PY  - 1998
SP  - 599
EP  - 606
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a12/
LA  - ru
ID  - MZM_1998_63_4_a12
ER  - 
%0 Journal Article
%A S. Yu. Nemirovski
%T Holomorphic functions and embedded real surfaces
%J Matematičeskie zametki
%D 1998
%P 599-606
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a12/
%G ru
%F MZM_1998_63_4_a12
S. Yu. Nemirovski. Holomorphic functions and embedded real surfaces. Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 599-606. http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a12/

[1] Nemirovskii S. Yu., “Shteinovy oblasti na algebraicheskikh mnogoobraziyakh”, Matem. zametki, 60:2 (1996), 295–298 | MR | Zbl

[2] Siu Y.-T., “Every Stein subvariety admits a Stein neighborhood”, Invent. Math., 38:1 (1976), 89–100 | DOI | MR | Zbl

[3] Lempert L., “Algebraic approximations in analytic geometry”, Invent. Math., 121:2 (1995), 335–354 | DOI | MR | Zbl

[4] Bennequin D., “Topologie symplectique, convexité holomorphe et structures de contact (d'après Y. Eliashberg, D. McDuff et al.)”, Astérisque, no. 189–190, 1990, 285–323 | MR | Zbl

[5] Fujita R., “Domaines sans point critique intérieur sur l'espace projectif complexe”, J. Math. Soc. Japan, 15:4 (1963), 443–473 | MR | Zbl

[6] Fujita R., “Domaines sans point critique intérieur sur l'espace produit”, J. Math. Kyoto Univ., 4:3 (1965), 493–514 | MR | Zbl

[7] Ivashkovich S., Shevchishin V., Pseudoholomorphic curves and envelopes of meromorphy of two-spheres in $\mathbb{CP}^2$, Preprint, 1995

[8] Chirka E. M., “Obobschennaya lemma Gartogsa i nelineinoe $\overline\partial$-uravnenie”, Kompleksnyi analiz v sovremennoi matematike, Sb., posvyasch. B. V. Shabatu, Fazis, M., 1997, 19–30

[9] Hirai E., “Domaine d'holomorphie sur un espace projectif complexe”, J. Math. Kyoto Univ., 10:1 (1970), 83–102 | MR | Zbl

[10] Fabre B., “Sur l'intersection d'une surface de Riemann avec des hypersurfaces algebriques”, C. R. Acad. Sci. Paris. Sér. I Math., 322:4 (1996), 371–376 | MR | Zbl

[11] Kronheimer P. B., Mrowka T. S., “The genus of embedded surfaces in the projective plane”, Math. Res. Lett., 1:6 (1994), 797–808 | MR | Zbl

[12] Morgan J. W., The Seiberg–Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Math. Notes, 44, Univ. Press, Princeton, NJ, 1996 | Zbl

[13] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1:6 (1994), 769–796 | MR | Zbl

[14] Morgan J. W., Szabó Z., Taubes C. H., “A product formula for Seiberg–Witten invariants and the generalized Thom conjecture”, J. Differential Geom., 44:4 (1996), 706–788 | MR | Zbl

[15] Matsugu Y., “The Levi problem for a product manifold”, Pacific J. Math., 46:1 (1973), 231–233 | MR | Zbl