Maximal resolvability of totally bounded and $\aleph_0$-bounded groups
Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 593-598.

Voir la notice de l'article provenant de la source Math-Net.Ru

The maximal resolvability of totally bounded groups (and, under the assumption that the generalized continuum hypothesis holds, of $\aleph_0$-bounded groups) is proved.
@article{MZM_1998_63_4_a11,
     author = {V. I. Malykhin},
     title = {Maximal resolvability of totally bounded and $\aleph_0$-bounded groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {593--598},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a11/}
}
TY  - JOUR
AU  - V. I. Malykhin
TI  - Maximal resolvability of totally bounded and $\aleph_0$-bounded groups
JO  - Matematičeskie zametki
PY  - 1998
SP  - 593
EP  - 598
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a11/
LA  - ru
ID  - MZM_1998_63_4_a11
ER  - 
%0 Journal Article
%A V. I. Malykhin
%T Maximal resolvability of totally bounded and $\aleph_0$-bounded groups
%J Matematičeskie zametki
%D 1998
%P 593-598
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a11/
%G ru
%F MZM_1998_63_4_a11
V. I. Malykhin. Maximal resolvability of totally bounded and $\aleph_0$-bounded groups. Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 593-598. http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a11/

[1] Hewitt E., “A problem of set-theoretic topology”, Duke Math. J., 10 (1943), 309–333 | DOI | MR | Zbl

[2] Malykhin V. I., “Ekstremalno-nesvyaznye i blizkie k nim gruppy”, Dokl. AN SSSR, 220:1 (1975), 27–30 | MR | Zbl

[3] Protasov I. V., “Diskretnye podmnozhestva topologicheskikh grupp”, Matem. zametki, 55:1 (1994), 150–151 | MR | Zbl

[4] Comfort W. W., van Mill J., “Groups with only resolvable topologies”, Proc. Amer. Math. Soc., 120 (1994), 687–696 | DOI | MR | Zbl

[5] Comfort W. W., Gladdiness H., van Mill J., “Proper pseudocompact subgroups of pseudocompact Abelian groups”, Ann. New York Acad. Sci., 728 (1994), 237–247 | DOI | MR | Zbl

[6] Protasov I. V., “Razlozhimost $\tau$-ogranichennykh grupp”, Matem. studii. Pratsi Lvivskogo matem. t-va, 5 (1995), 17–20 | MR | Zbl

[7] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966

[8] Guran I. I., “O topologicheskikh gruppakh, blizkikh k finalno kompaktnym”, Dokl. AN SSSR, 256:6 (1981), 1305–1307 | MR | Zbl

[9] Malykhin V. I., “Nowhere dense subsets and Booth's lemma”, Comment. Math. Univ. Carolin., 37:2 (1996), 391–395 | MR | Zbl