Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_63_4_a11, author = {V. I. Malykhin}, title = {Maximal resolvability of totally bounded and $\aleph_0$-bounded groups}, journal = {Matemati\v{c}eskie zametki}, pages = {593--598}, publisher = {mathdoc}, volume = {63}, number = {4}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a11/} }
V. I. Malykhin. Maximal resolvability of totally bounded and $\aleph_0$-bounded groups. Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 593-598. http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a11/
[1] Hewitt E., “A problem of set-theoretic topology”, Duke Math. J., 10 (1943), 309–333 | DOI | MR | Zbl
[2] Malykhin V. I., “Ekstremalno-nesvyaznye i blizkie k nim gruppy”, Dokl. AN SSSR, 220:1 (1975), 27–30 | MR | Zbl
[3] Protasov I. V., “Diskretnye podmnozhestva topologicheskikh grupp”, Matem. zametki, 55:1 (1994), 150–151 | MR | Zbl
[4] Comfort W. W., van Mill J., “Groups with only resolvable topologies”, Proc. Amer. Math. Soc., 120 (1994), 687–696 | DOI | MR | Zbl
[5] Comfort W. W., Gladdiness H., van Mill J., “Proper pseudocompact subgroups of pseudocompact Abelian groups”, Ann. New York Acad. Sci., 728 (1994), 237–247 | DOI | MR | Zbl
[6] Protasov I. V., “Razlozhimost $\tau$-ogranichennykh grupp”, Matem. studii. Pratsi Lvivskogo matem. t-va, 5 (1995), 17–20 | MR | Zbl
[7] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966
[8] Guran I. I., “O topologicheskikh gruppakh, blizkikh k finalno kompaktnym”, Dokl. AN SSSR, 256:6 (1981), 1305–1307 | MR | Zbl
[9] Malykhin V. I., “Nowhere dense subsets and Booth's lemma”, Comment. Math. Univ. Carolin., 37:2 (1996), 391–395 | MR | Zbl