Degenerate Poisson structures in dimension 3
Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 579-592.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formal normal forms of degenerate Poisson structures in dimension 3 are described. The main tool of the study is a spectral sequence previously introduced by the author. In particular, this method allows one to obtain a new proof of the linearizability of Poisson structures with semisimple linear part. However, there are nonlinearizable Poisson structures in dimension 3 as well.
@article{MZM_1998_63_4_a10,
     author = {O. V. Lychagina},
     title = {Degenerate {Poisson} structures in dimension 3},
     journal = {Matemati\v{c}eskie zametki},
     pages = {579--592},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a10/}
}
TY  - JOUR
AU  - O. V. Lychagina
TI  - Degenerate Poisson structures in dimension 3
JO  - Matematičeskie zametki
PY  - 1998
SP  - 579
EP  - 592
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a10/
LA  - ru
ID  - MZM_1998_63_4_a10
ER  - 
%0 Journal Article
%A O. V. Lychagina
%T Degenerate Poisson structures in dimension 3
%J Matematičeskie zametki
%D 1998
%P 579-592
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a10/
%G ru
%F MZM_1998_63_4_a10
O. V. Lychagina. Degenerate Poisson structures in dimension 3. Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 579-592. http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a10/

[1] Weinstein A., “The local structure of Poisson manifolds”, J. Differential Geom., 18 (1983), 523–557 | MR | Zbl

[2] Conn J. F., “Normal forms for smooth Poisson structures”, Ann. of Math. (2), 121 (1985), 565–593 | DOI | MR | Zbl

[3] Dufour J.-P., “Linéarisation de certaines structures de Poisson”, J. Differential Geom., 32 (1990), 415–428 | MR | Zbl

[4] Lychagina O. V., “Klassifikatsiya puassonovykh struktur”, Dokl. RAN, 350:3 (1996), 304–307 | MR | Zbl

[5] Lychagina O. V., “Normalnye formy vyrozhdennykh puassonovykh struktur”, Matem. zametki, 61:2 (1997), 220–235 | MR | Zbl

[6] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | Zbl

[7] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979

[8] Hochschild G., Serre J.-P., “Cohomology of Lie Algebras”, Ann. of Math., 57 (1953), 591–603 | DOI | MR | Zbl

[9] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1984