Specific group properties of differential equations with deviating argument. Introduction to the linear theory
Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 483-493.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe an approach to differential equations with deviating argument which takes account of the structure of the homeomorphism group generated by the functions specifying the deviated arguments. The formalism presented here is particularly simple and instructive for the case in which the group is cyclic. In the class of linear differential equations with integer deviations, this formalism permits us to describe regular extensions of the class of ordinary differential equations.
@article{MZM_1998_63_4_a0,
     author = {L. A. Beklaryan},
     title = {Specific group properties of differential equations with deviating argument. {Introduction} to the linear theory},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--493},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a0/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - Specific group properties of differential equations with deviating argument. Introduction to the linear theory
JO  - Matematičeskie zametki
PY  - 1998
SP  - 483
EP  - 493
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a0/
LA  - ru
ID  - MZM_1998_63_4_a0
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T Specific group properties of differential equations with deviating argument. Introduction to the linear theory
%J Matematičeskie zametki
%D 1998
%P 483-493
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a0/
%G ru
%F MZM_1998_63_4_a0
L. A. Beklaryan. Specific group properties of differential equations with deviating argument. Introduction to the linear theory. Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 483-493. http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a0/

[1] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | Zbl

[2] Pinni E., Obyknovennye differentsialno-raznostnye uravneniya, IL, M., 1961

[3] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Nauka, M., 1984

[4] Beklaryan L. A., Differentsialnoe uravnenie s otklonyayuschimsya argumentom kak beskonechnomernaya dinamicheskaya sistema, Soobsch. po prikladnoi matem. Preprint, VTs AN SSSR, M., 1989

[5] Beklaryan L. A., “Ob odnom metode regulyarizatsii kraevykh zadach dlya differentsialnykh uravnenii s otklonyayuschimsya argumentom”, Dokl. AN SSSR, 317:5 (1991), 1033–1037 | MR | Zbl

[6] Beklaryan L. A., “Differentsialnoe uravnenie s otklonyayuschimsya argumentom kak beskonechnomernaya dinamicheskaya sistema”, Kachestvennye metody teorii differentsialnykh uravnenii i ikh prilozheniya, Sb. nauchn. tr. MAI, MAI, M., 1991, 5–22 | MR

[7] Beklaryan L. A., “K teorii lineinykh differentsialnykh uravnenii s otklonyayuschimsya argumentom”, UMN, 49:6 (1994), 193–194 | MR | Zbl

[8] Beklaryan L. A., Shmulyan M., “O polnote reshenii differentsialnykh uravnenii s otklonyayuschimsya argumentom, mazhoriruemykh eksponentsialnymi funktsiyami”, Dokl. RAN, 341:6 (1995), 727–730 | MR | Zbl