On a class of $N$-dimensional trigonometric series
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 402-406
Voir la notice de l'article provenant de la source Math-Net.Ru
An analog of Fomin's well-known one-dimensional theorem is proved for trigonometric series of the form
$$
\lambda_0+\sum_{l=1}^\infty\lambda_l\sum_{k\in lV\setminus(l-1)V}e^{ikx},
\qquad \lambda_l\to0 \quad\text{as}\quad l\to\infty,
$$
given on an $N$-dimensional torus, where $V$ is some polyhedron in $\mathbb R^N$.
@article{MZM_1998_63_3_a9,
author = {O. I. Kuznetsova},
title = {On a class of $N$-dimensional trigonometric series},
journal = {Matemati\v{c}eskie zametki},
pages = {402--406},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a9/}
}
O. I. Kuznetsova. On a class of $N$-dimensional trigonometric series. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 402-406. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a9/