On a class of $N$-dimensional trigonometric series
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 402-406

Voir la notice de l'article provenant de la source Math-Net.Ru

An analog of Fomin's well-known one-dimensional theorem is proved for trigonometric series of the form $$ \lambda_0+\sum_{l=1}^\infty\lambda_l\sum_{k\in lV\setminus(l-1)V}e^{ikx}, \qquad \lambda_l\to0 \quad\text{as}\quad l\to\infty, $$ given on an $N$-dimensional torus, where $V$ is some polyhedron in $\mathbb R^N$.
@article{MZM_1998_63_3_a9,
     author = {O. I. Kuznetsova},
     title = {On a class of $N$-dimensional trigonometric series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {402--406},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a9/}
}
TY  - JOUR
AU  - O. I. Kuznetsova
TI  - On a class of $N$-dimensional trigonometric series
JO  - Matematičeskie zametki
PY  - 1998
SP  - 402
EP  - 406
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a9/
LA  - ru
ID  - MZM_1998_63_3_a9
ER  - 
%0 Journal Article
%A O. I. Kuznetsova
%T On a class of $N$-dimensional trigonometric series
%J Matematičeskie zametki
%D 1998
%P 402-406
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a9/
%G ru
%F MZM_1998_63_3_a9
O. I. Kuznetsova. On a class of $N$-dimensional trigonometric series. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 402-406. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a9/